ﻻ يوجد ملخص باللغة العربية
We report a detailed investigation into the metamagnetism of Sr3Ru2O7 at low temperatures for the magnetic field parallel to the ruthenium oxygen planes. The metamagnetism is studied as a function of temperature, magnetic field and sample quality using magnetisation, magnetotransport and specific heat as probes. From hysteretic behaviour in the magnetisation, we confirm earlier work and observe a finite temperature critical point at (5 T, >0.25 K). In our highest quality samples two-step metamagnetic transitions are additionally observed at 5.8 T and at 6.3 T, which coincide with a range of broad maximum in the magnetoresistance. At low temperatures, these two metamagnetic features each further split in two. Such behaviour of the multiple transitions are qualitatively different from the first order transition at 5.1 T.
The magnetic and electronic properties of Eu2Ru2O7 are discussed in terms of the local ruthenium and europium coordinations, electronic band structure calculations and molecular orbital energy levels. A preliminary electronic structure was calculated
We report the results of low temperature transport, specific heat and magnetisation measurements on high quality single crystals of the bilayer perovskite Sr3Ru2O7, which is a close relative of the unconventional superconductor Sr2RuO4. Metamagnetism
The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi veloc
The strongly exchange enhanced Pauli paramagnet LaCo$_9$Si$_4$ is found to exhibit an itinerant metamagnetic phase transition with indications for metamagnetic quantum criticality. Our investigation comprises magnetic, specific heat, and NMR measurem
Applying a magnetic field in the hexagonal plane of YMn$_6$Sn$_6$ leads to a complex magnetic phase diagram of commensurate and incommensurate phases, one of which coexists with the topological Hall effect (THE) generated by a unique fluctuation-driv