ﻻ يوجد ملخص باللغة العربية
The spin coherence phenomena and the possibility of their observation in nanomagnetic insulators attract more and more attention in the last several years. Recently it has been shown that in these systems in large transverse magnetic field there can be a fairly narrow coherence window for phonon and nuclear spin-mediated decoherence. What kind of spin dynamics can then be expected in this window in a crystal of magnetic nanomolecules coupled to phonons, to nuclear spin bath and it to each other via dipole-dipole interactions? Studying multispin correlations, we determine the region of parameters where coherent clusters of collective spin excitations can appear. Although two particular systems, namely crystals of $Fe_8$-triazacyclonane and $Mn_{12}$-acetate molecules, are used in this work to illustrate the results, here we are not trying to predict an existence of collective coherent dynamics in some particular system. Instead, we discuss the way how any crystalline system of dipole-dipole coupled nanomolecules can be analyzed to decide whether this system is suitable for attempts to observe coherent dynamics. The presented analysis can be useful in the search for magnetic systems showing the spin coherence phenomena.
Among the factors determining the quantum coherence of the spin in molecular magnets is the presence and the nature of nuclear spins in the molecule. We have explored modifying the nuclear spin environment in Cr$_7$Ni-based molecular nanomagnets by r
We obtain a fundamental instability of the magnetization-switching fronts in super-paramagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instabil
We report observation of coherent quantum oscilations in spin-10 Fe8 molecular clusters. The powder of magnetically oriented Fe8 crystallites was placed inside a resonator, in a dc magnetic field perpendicular to the magnetization axis. The field dep
Electron spin coherence is induced via light-hole transitions in a quantum well waveguide without either an external or internal DC magnetic field. In the absence of spin precession, the induced spin coherence is detected through effects of quantum i
Current-induced spin torques in layered magnetic heterostructures have many commonalities across broad classes of magnetic materials. These include not only collinear ferromagnets, ferrimagnets, and antiferromagnets, but also more complex noncollinea