ﻻ يوجد ملخص باللغة العربية
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destinations, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. Here we explore these biases and provide a statistical analysis of their origin. We derive a mean-field analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular we find that the edge and vertex detection probability is depending on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with scale-free topology. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in different network models. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. The numerical study also allows the identification of intervals of the exploration parameters that optimize the fraction of nodes and edges discovered in the sampled graph. This finding might hint the steps toward more efficient mapping strategies.
We develop a microscopic approach to the consistent construction of the kinetic theory of dilute weakly ionized gases of hydrogen-like atoms. The approach is based on the framework of the second quantization method in the presence of bound states of
We propose an approach to a multiscale problem in the theory of thermotropic uniaxial nematics based on the method of statistical field theory. This approach enables us to relate the coefficients $A$, $B$, $C$, $L_1$ and $L_2$ of the Landau-de Gennes
A geometric approach to the friction phenomena is presented. It is based on the holographic view which has recently been popular in the theoretical physics community. We see the system in one-dimension-higher space. The heat-producing phenomena are m
The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling $G$ between twisting and bending, known to arise from the groove a
We study the derivation of macroscopic traffic models from car-following vehicle dynamics by means of hydrodynamic limits of an Enskog-type kinetic description. We consider the superposition of Follow-the-Leader (FTL) interactions and relaxation towa