ﻻ يوجد ملخص باللغة العربية
We performed a novel phase sensitive microwave reflection experiment which directly probes the dynamics of the Josephson plasma resonance in both the linear and non-linear regime. When the junction was driven below the plasma frequency into the non-linear regime, we observed for the first time the transition between two different dynamical states predicted for non-linear systems. In our experiment, this transition appears as an abrupt change in the reflected signal phase at a critical excitation power.
We have proposed to employ the microwave S parameters method to measure phase oscillation modes (POMs) in Josephson coupled-layered superconductors. For the first time, in SmBa2Cu3O7 (SmBCO) and YBa2Cu3O7-b (YBCO) at 77 K we have directly observed so
We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, t
We report on a direct quantitative comparison between Thoms general catastrophe theory for systems presenting discontinuous behavior and experimental reality. It is demonstrated that the model provides a striking quantitative description of the measu
We present an experimental and theoretical study of row switching in two-dimensional Josephson junction arrays. We have observed novel dynamic states with peculiar percolative patterns of the voltage drop inside the arrays. These states were directly
The properties of phase escape in a dc SQUID at 25 mK, which is well below quantum-to-classical crossover temperature $T_{cr}$, in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlO$_{x} $/Nb tunnel ju