ﻻ يوجد ملخص باللغة العربية
We observe a new type of magneto-oscillations in the photovoltage and the longitudinal resistance of a two-dimensional electron system. The oscillations are induced by microwave irradiation and are periodic in magnetic field. The period is determined by the microwave frequency, the electron density, and the distance between potential probes. The phenomenon is accounted for by coherent excitation of edge magnetoplasmons in the regions near the contacts and offers perspectives for the development of new tunable microwave and terahertz detection schemes and spectroscopic techniques.
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc t
The electrical transport properties of a bipolar InAs/GaSb system have been studied in magnetic field. The resistivity oscillates between insulating and metallic behaviour while the quantum Hall effect shows a digital character oscillating from 0 to
Motivated by the recently discovered microwave-induced ``zero-resistance states in two-dimensional electron systems, we study the microwave photoconductivity of a two-dimensional electron gas (2DEG) subject to a unidirectional static periodic potenti
The polarization dependence of the low field microwave photoconductivity and absorption of a two-dimensional electron system has been investigated in a quasi-optical setup in which linear and any circular polarization can be produced in-situ. The mic
We develop a theory of magnetooscillations in the photoconductivity of a two-dimensional electron gas observed in recent experiments. The effect is governed by a change of the electron distribution function induced by the microwave radiation. We anal