ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum interference structures in the conductance plateaus of gold nanojunctions

71   0   0.0 ( 0 )
 نشر من قبل Andras Halbritter
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The conductance of breaking metallic nanojunctions shows plateaus alternated with sudden jumps, corresponding to the stretching of stable atomic configurations and atomic rearrangements, respectively. We investigate the structure of the conductance plateaus both by measuring the voltage dependence of the plateaus slope on individual junctions and by a detailed statistical analysis on a large amount of contacts. Though the atomic discreteness of the junction plays a fundamental role in the evolution of the conductance, we find that the fine structure of the conductance plateaus is determined by quantum interference phenomenon to a great extent.



قيم البحث

اقرأ أيضاً

Using the recently developed time-dependent Landauer-Buttiker formalism and Jefimenkos retarded solutions to the Maxwell equations, we show how to compute the time-dependent electromagnetic field produced by the charge and current densities in nanoju nctions out of equilibrium. We then apply this formalism to a benzene ring junction, and show that geometry-dependent quantum interference effects can be used to control the magnetic field in the vicinity of the molecule. Then, treating the molecular junction as a quantum emitter, we demonstrate clear signatures of the local molecular geometry in the non-local radiated power.
Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.
We study quantum transport in HgTe/HgCdTe quantum wells under the condition that the chemical potential is located outside of the bandgap. We first analyze symmetry properties of the effective Bernevig-Hughes-Zhang Hamiltonian and the relevant symmet ry-breaking perturbations. Based on this analysis, we overview possible patterns of symmetry breaking that govern the quantum interference (weak localization or weak antilocalization) correction to the conductivity in two dimensional HgTe/HgCdTe samples. Further, we perform a microscopic calculation of the quantum correction beyond the diffusion approximation. Finally, the interference correction and the low-field magnetoresistance in a quasi-one-dimensional geometry are analyzed.
Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklik e structures in the differential conductance curves, whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our analysis implies that the excitation of a bound molecule to a large number of energetically similar loosely bound states is responsible for the peaklike structures. Recent experimental studies showing related features are discussed within the framework of our model.
Provided the electrical properties of electro-burnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10nm electrical devices. We examine both theoretically and expe rimentally the electrical conductance of electro-burnt graphene junctions at the last stages of nanogap formation. We account for the appearance of a counterintuitive increase in electrical conductance just before the gap forms. This is a manifestation of room-temperature quantum interference and arises from a combination of the semi-metallic band structure of graphene and a crossover from electrodes with multiple-path connectivity to single-path connectivity just prior to breaking. Therefore our results suggest that conductance enlargement prior to junction rupture is a signal of the formation of electro-burnt junctions, with a pico-scale current path formed from a single sp2-bond.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا