ترغب بنشر مسار تعليمي؟ اضغط هنا

Conversion of dislocation oscillation waves to spin ones in the vicinity of OPT temperatures

302   0   0.0 ( 0 )
 نشر من قبل Anatoliy Zhuravlyov F.
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dislocation waves in magnetic crystals in the vicinity of orientation phase transition (OPT) temperatures are considered in a frame of the field theory of the defects. The singularities of the dislocation flows, elastic deformations and magnetization occur if the magnetic subsystem is inhomogeneous and the dispersion of the media is not taken into account. Media dispersion causes a regularity of these parameters and a conversion of the spin wave to the dislocation wave.



قيم البحث

اقرأ أيضاً

135 - Michael Zaiser , Ronghai Wu 2021
The current interest in compositionally complex alloys including so called high entropy alloys has caused renewed interest in the general problem of solute hardening. It has been suggested that this problem can be addressed by treating the alloy as a n effective medium containing a random distribution of dilatation and compression centers representing the volumetric misfit of atoms of different species. The mean square stresses arising from such a random distribution can be calculated analytically, their spatial correlations are strongly anisotropic and exhibit long-range tails with third-order power law decay. Here we discuss implications of the anisotropic and long-range nature of the correlation functions for the pinning of dislocations of arbitrary orientation. While edge dislocations are found to follow the standard pinning paradigm, for dislocations of near screw orientation we demonstrate the co-existence of two types of pinning energy minima.
The classical motion of gliding dislocation lines in slip planes of crystalline solid helium leads to plastic deformation even at temperatures far below the Debye temperature and can affect elastic properties. In this work we argue that the gliding o f dislocations and plasticity may be the origin of many observed elastic anomalies in solid He-4, which have been argued to be connected to supersolidity. We present a dislocation motion model that describes the stress-strain $tau$-$epsilon$ curves and work hardening rate $dtau/depsilon$ of a shear experiment performed at constant strain rate $dot{epsilon}$ in solid helium. The calculated $dtau/depsilon$ exhibits strong softening with increasing temperature due to the motion of dislocations, which mimics anomalous softening of the elastic shear modulus $mu$. In the same temperature region the motion of dislocations causes dissipation with a prominent peak.
Using a partitioned-energy thermodynamic framework which assigns energy to that of atomic configurational stored energy of cold work and kinetic-vibrational, we derive an important constraint on the Taylor-Quinney coefficient, which quantifies the fr action of plastic work that is converted into heat during plastic deformation. Associated with the two energy contributions are two separate temperatures -- the ordinary temperature for the thermal energy and the effective temperature for the configurational energy. We show that the Taylor-Quinney coefficient is a function of the thermodynamically defined effective temperature that measures the atomic configurational disorder in the material. Finite-element analysis of recently published experiments on the aluminum alloy 6016-T4 citep{neto_2020}, using the thermodynamic dislocation theory (TDT), shows good agreement between theory and experiment for both stress-strain behavior and temporal evolution of the temperature. The simulations include both conductive and convective thermal energy loss during the experiments, and significant thermal gradients exist within the simulation results. Computed values of the differential Taylor-Quinney coefficient are also presented and suggest a value which differs between materials and increases with increasing strain.
We study theoretically the influence of the temperature and disorder on the spin wave spectrum of the magnonic crystal Fe$_{1-c}$Co$_{c}$. Our formalism is based on the analysis of a Heisenberg Hamiltonian by means of the wave vector and frequency de pendent transverse magnetic susceptibility. The exchange integrals entering the model are obtained from the emph{ab initio} magnetic force theorem. The coherent potential approximation is employed to treat the disorder and random phase approximation in order to account for the softening of the magnon spectrum at finite temperatures. The alloy turns out to exhibit many advantageous properties for spintronic applications. Apart from high Curie temperature, its magnonic bandgap remains stable at elevated temperatures and is largely unaffected by the disorder. We pay particular attention to the attenuation of magnons introduced by the alloying. The damping turns out to be a non-monotonic function of the impurity concentration due to the non-trivial evolution of the value of exchange integrals with the Co concentration. The disorder induced damping of magnons is estimated to be much smaller than their Landau damping.
We report results of MD simulations of amorphous ice in the pressure range 0 - 22.5 kbar. The high-density amorphous ice (HDA) prepared by compression of Ih ice at T = 80 K is annealed to T = 170 K at intermediate pressures in order to generate relax ed states. We confirm the existence of recently observed phenomena, the very high-density amorphous ice and a continuum of HDA forms. We suggest that both phenomena have their origin in the evolution of the network topology of the annealed HDA phase with decreasing volume, resulting at low temperatures in the metastability of a range of densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا