ﻻ يوجد ملخص باللغة العربية
The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron scattering intensities are also analyzed using the 1st-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principle DMRG calculations are used to study the relation between these two quantities.
Inelastic neutron scattering experiments on the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9D24N4)(NO2)ClO4 have been performed under magnetic fields below and above a critical field Hc at which the energy gap closes. Normal field
One-dimensional gapped phases that avoid any symmetry breaking have drawn enduring attention. In this paper, we study such phases in a bond-alternating spin-1 $K$-$Gamma$ chain built of a Kitaev ($K$) interaction and an off-diagonal $Gamma$ term. In
The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the interplay of Kitaev ($K$) interaction and a symmetric off-diagonal $Gamma$ interaction. To provide insight into the challenging problems, we stu
We successfully synthesized the zinc-verdazyl complex [Zn(hfac)$_2$]$cdot$($o$-Py-V) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; $o$-Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an $S$ = 1/2 ferromagnetic-antif
Dynamics of S=1 antiferromagnetic bond-alternating chains in the dimer phase, in the vicinity of the critical point with the Haldane phase, is studied by a field theoretical method. This model is considered to represent the compound Ni(C$_9$H$_{24}$N