ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron scattering evidence for magnetic field driven abrupt magnetic and structural transitions in a phase separated manganite

206   0   0.0 ( 0 )
 نشر من قبل Simon Charles
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Substitutions at the Mn-site of the charge-ordered Pr0.5Ca0.5MnO3 manganite is an effective way to induce abrupt jumps on the magnetic field driven magnetization curve. In order to get new insights into the origin of this remarkable feature, the Pr0.5Ca0.5Mn0.97Ga0.03O3 perovskite manganite has been studied by neutron diffraction, versus temperature and at 2.5K in an applied magnetic field up to 6 Tesla. A weak and complex antiferromagnetic order is found for the low temperature ground-state. Magnetic transitions, associated with structural ones, are evidenced for certain strengths of magnetic field, which gives rise to the step-like behavior corresponding to the magnetization curve. Small angle neutron scattering provides evidence for a nucleation process of micron size ferromagnetic domains which follows the magnetization behavior.



قيم البحث

اقرأ أيضاً

145 - M. Quintero , F. Parisi , G. Leyva 2008
We present magnetic and transport measurements on La5/8-yPryCa3/8MnO3 with y = 0.3, a manganite compound exhibiting intrinsic multiphase coexistence of sub-micrometric ferromagnetic and antiferromagnetic charge ordered regions. Time relaxation effect s between 60 and 120K, and the obtained magnetic and resistive viscosities, unveils the dynamic nature of the phase separated state. An experimental procedure based on the derivative of the time relaxation after the application and removal of a magnetic field enables the determination of the otherwise unreachable equilibrium state of the phase separated system. With this procedure the equilibrium phase fraction for zero field as a function of temperature is obtained. The presented results allow a correlation between the distance of the system to the equilibrium state and its relaxation behavior.
The influence of an external static magnetic field (up to 480 mT)on the structural properties of EuTiO$_3$ (ETO) polycrystalline samples was examined by powder XRD at the Elettra synchrotron facilities in the temperature range 100-300K. While the cub ic to tetragonal structural phase transition temperature in this magnetic field range remains almost unaffected, significant lattice effects appear at two characteristic temperatures (~200K and 250K), which becomes more pronounced at a critical threshold magnetic field. At ~200K a change in the sign of the magnetostriction is detected attributed to a modification of the local magnetic properties from intrinsic ferromagnetism to intrinsic antiferromagnetism. These data are a clear indication that strong spin-lattice interactions govern also the high temperature phase of ETO and trigger the appearance of magnetic domain formation and novel phase transitions
We investigate the structural and magnetic phase transitions in EuTi1-xNbxO3 with synchrotron powder X-ray diffraction (XRD), resonant ultrasound spectroscopy (RUS), and magnetization measurements. Upon Nb-doping, the Pm-3m to I4/mcm structural trans ition shifts to higher temperatures and the room temperature lattice parameter increases while the magnitude of the octahedral tilting decreases. In addition, Nb substitution for Ti destabilizes the antiferromagnetic ground state of the parent compound and long range ferromagnetic order is observed in the samples containing more than 10% Nb. The structural transition in pure and doped compounds is marked by a step-like softening of the elastic moduli in a narrow temperature interval near TS, which resembles that of SrTiO3 and can be adequately modeled using the Landau free energy model employing the same coupling between strain and octahedral tilting order parameter as previously used to model SrTiO3.
Neutron diffraction measurements, performed in presence of an external magnetic field, have been used to show structural evidence for the kinetic arrest of the first-order phase transition from (i) the high temperature austenite phase to the low temp erature martensite phase in the magnetic shape memory alloy Ni37Co11Mn42.5Sn9.5, (ii) the higher temperature ferromagnetic phase to the lower temperature antiferromagnetic phase in the half-doped charge ordered compound La0.5Ca0.5MnO3 and (iii) the formation of a glass-like arrested state (GLAS). The CHUF (cooling and heating under unequal fields) protocol has been used to establish phase coexistence of metastable and equilibrium states of GLAS and also to demonstrate the devitrification of the arrested metastable states in the neutron diffraction patterns. We also explore the field-temperature (H,T) phase diagram for the two compounds, which depicts the kinetic arrest line TK(H). TK is seen to increase as H increases.
Neutron diffraction studies as a function of temperature on solid solutions of MnSe and MnTe in the Se rich region are presented. Interestingly as Te is doped in MnSe, the structural transformation to NiAs phase diminishes, both in terms of % fractio n of compound as well as in terms of transition temperature. In MnTe$_{0.3}$Se$_{0.7}$, the NaCl to NiAs phase transformation occurs at about 40K and although it is present at room temperature in MnTe$_{0.5}$Se$_{0.5}$, its volume fraction is only about 10% of the total volume of sample. The magnetic ordering temperature of the cubic phase decreases with increasing Te content while the hexagonal phase orders at the same temperature as in MnSe. Anomalies in thermal evolution of lattice parameters at magnetic ordering as well as structural transition temperatures indicate presence of magnetostructural coupling in these compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا