ﻻ يوجد ملخص باللغة العربية
We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few micrometer above a dielectric surface on an evanescent-wave atom mirror. After evaporative cooling by all-optical means, expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum. The presence of a condensate is observed in two independent ways by a magnetically induced collapse at negative scattering length and by measurements of the horizontal expansion.
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole
We describe an experiment to produce 87Rb Bose-Einstein condensates in an optically plugged magnetic quadrupole trap, using a blue-detuned laser. Due to the large detuning of the plug laser with respect to the atomic transition, the evaporation has t
We investigate the collective excitations of a one-dimensional Bose-Einstein condensate (BEC) with repulsive interaction between atoms in a quadratic plus quartic trap. By using the variational approach, the coupled equations of motion for the center
We discuss the effects of quenched disorder in a dilute Bose-Einstein condensate confined in a hard walls trap. Starting from the disordered Gross-Pitaevskii functional, we obtain a representation for the quenched free energy as a series of integer m
We demonstrate a production of large-area $^{87}$Rb Bose-Einstein condensates (BECs) using a non-Gaussian optical dipole trap (ODT). The ODT is formed by focusing a symmetrically truncated Gaussian laser beam and it is shown that the beam clipping ca