ﻻ يوجد ملخص باللغة العربية
We present a detailed analytical and numerical analysis of the nuclear spin dynamics in parabolic quantum wells. The shallow potential of parabolic quantum wells permits substantial modification of the electronic wave function in small electric fields. The nuclear spin relaxation via the hyperfine interaction depends on the electronic local density of states, therefore the local nuclear relaxation time depends sensitively on the electric field. For an inhomogeneous nuclear magnetization, such as generated by dynamic nuclear polarization, the total nuclear magnetization dynamics can similarly be altered. We examine this effect quantitatively and the effect of temperature, field, well thickness, and nuclear spin diffusion.
In PbTe wide parabolic quantum wells (WPQW) a plateau-like structure is observed in the Hall resistance, which corresponds to the Shubnikov-de Haas oscillations in the same manner as known from the quantum Hall effect. At the same time a non-local si
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
Organic-inorganic layered perovskites are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitation
Nuclear-spin diffusion in double quantum wells (QWs) is examined by using dynamic nuclear polarization (DNP) at a Landau level filling factor $ u=2/3$ spin phase transition (SPT). The longitudinal resistance increases during the DNP of one of the two
Nuclear spin coherence and relaxation dynamics of all constituent isotopes of an n-doped CdTe/(Cd,Mg)Te quantum well structure are studied employing optically detected nuclear magnetic resonance. Using time-resolved pump-probe Faraday ellipticity, we