ترغب بنشر مسار تعليمي؟ اضغط هنا

On the sample size dependence of the critical current density in MgB$_2$ superconductors

189   0   0.0 ( 0 )
 نشر من قبل MengJun Qin
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sample size dependent critical current density has been observed in magnesium diboride superconductors. At high fields, larger samples provide higher critical current densities, while at low fields, larger samples give rise to lower critical current densities. The explanation for this surprising result is proposed in this study based on the electric field generated in the superconductors. The dependence of the current density on the sample size has been derived as a power law $jpropto R^{1/n}$ ($n$ is the $n$ factor characterizing $E-j$ curve $E=E_c(j/j_c)^n$). This dependence provides one with a new method to derive the $n$ factor and can also be used to determine the dependence of the activation energy on the current density.

قيم البحث

اقرأ أيضاً

A series of high quality BaFe$_{2-x}$Ni$_x$As$_2$ pnictide superconductors were studied using magnetic relaxation and isothermal magnetic measurements in order to study the second magnetization peak (SMP) and critical current behaviour in Ni-doped 12 2 family. The temperature dependence of the magnetic relaxation rate suggests a pinning crossover, whereas, its magnetic field dependence hints a vortex-lattice structural phase-transition. The activation energy ($U$) estimated using the magnetic relaxation data was analyzed in detail for slightly-underdoped, slightly-overdoped and an overdoped samples, using Maleys method and collective creep theory. Our results confirm that the SMP in these samples is due to the collective (elastic) to plastic creep crossover as has been observed for the other members of 122-family. In addition, we also investigated the doping dependence of the critical current density ($J_c$) and the vortex-pinning behaviour in these compounds. The observed $J_c$ is higher than the threshold limit (10$^5$ A/cm$^2$) considered for the technological potential and even greater than 1 MA/cm$^2$ for slightly underdoped Ni-content, x = 0.092 sample. The pinning characteristics were analyzed in terms of the models developed by Dew-Hughes and Griessen $et$ $al$, which suggest the dominant role of $delta l$-type pinning.
105 - Denis Gokhfeld 2019
A method is proposed for estimating the length scale of currents circulating in superconductors. The estimated circulation radius is used to determine the critical current density on the basis of magnetic measurements. The obtained formulas are appli cable to samples with negligibly small demagnetizing factors and to polycrystalline superconductors. The proposed method has been verified using experimental magnetization loops measured for polycrystalline YBa$_2$Cu$_3$O$_{7-d}$ and Bi$_{1.8}$Pb$_{0.3}$Sr$_{1.9}$Ca$_2$Cu$_3$O$_x$ superconductors.
Generally, studies of the critical current Ic are necessary if superconductors are to be of practical use because Ic sets the current limit below which there is a zero-resistance state. Here, we report a peak in the pressure dependence of the zero-fi eld Ic, Ic(0), at a hidden quantum critical point (QCP), where a continuous antiferromagnetic transition temperature is suppressed by pressure toward 0 K in CeRhIn5 and 4.4% Sn-doped CeRhIn5. The Ic(0)s of these Ce-based compounds under pressure exhibit a universal temperature dependence, underlining that the peak in zero-field Ic(P) is determined predominantly by critical fluctuations associated with the hidden QCP. The dc conductivity is a minimum at the QCP, showing anti-correlation with Ic(0). These discoveries demonstrate that a quantum critical point hidden inside the superconducting phase in strongly correlated materials can be exposed by the zero-field Ic, therefore providing a direct link between a QCP and unconventional superconductivity.
Universal scaling behaviour in superconductors has significantly elucidated fluctuation and phase transition phenomena in these materials. However, universal behaviour for the most practical property, the critical current, was not contemplated becaus e prevailing models invoke nucleation and migration of flux vortices. Such migration depends critically on pinning, and the detailed microstructure naturally differs from one material to another, even within a single material. Through microstructural engineering there have been ongoing improvements in the field-dependent critical current, thus illustrating its nonuniversal behaviour. But here we demonstrate the universal size scaling of the self-field critical current for any superconductor, of any symmetry, geometry or band multiplicity. Key to our analysis is the huge range of sample dimensions, from single-atomic-layer to mm-scale. These have widely variable microstructure with transition temperatures ranging from 1.2 K to the current record, 203 K. In all cases the critical current is governed by a fundamental surface current density limit given by the relevant critical field divided by the penetration depth.
We report the results from resistivity and magnetic measurements on polycrystalline Ce oxypnictide (CeFeAsO1-xFx) samples where x spans from 0.13 to 0.25. We find that the orbital limiting field is as high as 150 T and it systematically decreases wit h increasing doping. The Maki parameter is greater than one across the phase diagram and the large Maki parameter suggests that orbital and Pauli limiting effects contribute to the upper critical field. The broadening of the superconducting transition in the resistivity data was interpreted using the thermally activated flux flow (TAFF) model where we find that the TAFF activation energy, U0(B), is proportional to B^{-(gamma)} from 1 T to high fields, and (gamma) does not significantly change with doping. However, U0 and the superconducting critical current, Jc, are peaked in the mid-doping region (x = 0.15 to x = 0.20), and not in the low (x < 0.15) or high doping (x > 0.20) regions. Furthermore, U0 is correlated with Jc and follows the two fluid model for granular samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا