ﻻ يوجد ملخص باللغة العربية
Single crystals of Nd0.5Ca0.5MnO3 and Pr0.6Ca0.4MnO3 show current-induced insulator-metal transitions at low temperatures. In addition, the charge-ordering transition temperature decreases with increasing current. The electroresistive ratio, defined as r0.5/rI where r0.5 is the resistivity at a current of 0.5 mA and rI the resistivity at a given applied current, I, varies markedly with temperature and the value of I. Thermal hysteresis observed in Nd0.5Ca0.5MnO3 and Pr0.6Ca0.4MnO3 at the insulator-metal transition indicates that the transition is first-order. The current-induced changes are comparable to those induced by magnetic fields, and the insulator-metal transition in Pr0.6Ca0.4MnO3 is accordingly associated with a larger drop in resistivity.
Charge density waves are ubiquitous phenomena in metallic transition metal dichalcogenides. In NbSe$_2$, a triangular $3times3$ structural modulation is coupled to a charge modulation. Recent experiments reported evidence for a triangular-stripe tran
We have studied the magnetic field effect on low frequency dielectric properties of Pr0.6Ca0.4MnO3/polyvinylidene fluoride nanocomposite with 22.5% volume fraction of Pr0.6Ca0.4MnO3 nanoparticles. A strong magnetodielectric response was observed belo
There is growing interest in the photo-induced generation of rectified current, namely photocurrent phenomenon. While the response was attributed to noncentrosymmetric structures of crystals, the parity violation accompanied by the magnetic ordering,
Epitaxial strain imposed in complex oxide thin films by heteroepitaxy is recognized as a powerful tool for identifying new properties and exploring the vast potential of materials performance. A particular example is LaCoO3, a zero spin, nonmagnetic
We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter