ﻻ يوجد ملخص باللغة العربية
This paper has been temporarily withdrawn by the authors. We have recently found that noise in the experiments is at the origin of the supposed back-and-forth motion which is discussed in the first version of the paper. As a consequence, figs 4 and 5 as well as their discussion are incorrect. Figure 1 and the general trend of fig. 2 are still valid. At this time, we are uncertain whether or not the short time behavior of cI, shown in fig. 3, is affected by measurement noise. We are working on a new version of the paper, using new techniques that allow us to correct for the experimental noise.
We report measurements of the frequency-dependent shear moduli of aging colloidal systems that evolve from a purely low-viscosity liquid to a predominantly elastic glass or gel. Using microrheology, we measure the local complex shear modulus $G^{*}(o
Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-
The aging behavior of polymer glass, poly(methyl methacrylate), has been investigated through the measurement of ac dielectric susceptibility ata fixed frequency after a temperature shift $Delta T$ ($le $ 20 K)between two temperatures, $T_1$ and $T_2
We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: ($i$) stable flows during which the gel undergoes a tensile de
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature