ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism

117   0   0.0 ( 0 )
 نشر من قبل Ove Jepsen
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Choi et al. [Phys. Rev. B 66, 020513 (2002)] recently presented first principles calculations of the electron-phonon coupling and superconductivity in MgB2, emphasizing the importance of anisotropy and anharmonicity. We point out that (1) variation of the superconducting gap inside the sigma- or the pi-bands can hardly be observed in real samples, and (2) taking the anisotropy of the Coulomb repulsion into account influences the size of the small gap, Delta_pi.

قيم البحث

اقرأ أيضاً

An anisotropic lattice anomaly near the superconducting transition temperature, Tc, was observed in MgB2 by high-resolution neutron powder diffraction. The a-axis thermal expansion becomes negative near Tc, while the c-axis thermal expansion is unaff ected. This is qualitatively consistent with a depletion of the boron-boron s-band as the superconducting gap opens, resulting in weaker bonding. However, the observed anomaly is much larger than predicted by the Ehrenfest relation, strongly suggesting that the phonon thermal expansion also changes sign, as commonly observed in hexagonal layered crystals. These two effects may be connected through subtle changes in the phonon spectrum at Tc.
199 - Amy Y. Liu , I. I. Mazin 2006
We show that a recently predicted layered phase of lithium monoboride, Li2B2, combines the key mechanism for strong electron-phonon coupling in MgB2 (i.e., interaction of covalent B sigma bands with B bond-stretching modes) with the dominant coupling mechanism in CaC6 (i.e., interaction of free-electron-like interlayer states with soft intercalant modes). Yet, surprisingly, the electron-phonon coupling in Li2B2 is calculated to be weaker than in either MgB2 or CaC6. We demonstrate that this is due to the accidental absence of B pi states at the Fermi level in Li2B2. In MgB2, the pi electrons play an indirect but important role in strengthening the coupling of sigma electrons. Doping Li2B2 to restore pi electrons at the Fermi level is expected to lead to a new superconductor that could surpass MgB2 in Tc.
213 - Yu. Eltsev , S. Lee , K. Nakao 2002
In-plane electrical transport properties of MgB2 single crystals grown under high pressure of 4-6 GPa and temperature of 1400-1700oC in Mg-B-N system have been measured. For all specimens we found sharp superconducting transition around 38.1-38.3K wi th transition width within 0.2-0.3K. Estimated resistivity value at 40K is about 1 mkOhmcm and resistivity ratio R(273K)/R(40K) of about 4.9. Results of measurements in magnetic field up to 5.5T perpendicular to Mg and B planes and up to 9T in parallel orientation show temperature dependent anisotropy of the upper critical field with anisotropy ratio increasing from 2.2 close to Tc up to about 3 below 30K. Strong deviation of the angular dependence of Hc2 from anisotropic mass model has been also found.
76 - M. Xu , H. Kitazawa , Y. Takano 2001
The discovery of superconductor in magnesium diboride MgB2 with high Tc (39 K) has raised some challenging issues; whether this new superconductor resembles a high temperature cuprate superconductor(HTS) or a low temperature metallic superconductor; which superconducting mechanism, a phonon- mediated BCS or a hole superconducting mechanism or other new exotic mechanism may account for this superconductivity; and how about its future for applications. In order to clarify the above questions, experiments using the single crystal sample are urgently required. Here we have first succeeded in obtaining the single crystal of this new MgB2 superconductivity, and performed its electrical resistance and magnetization measurements. Their experiments show that the electronic and magnetic properties depend on the crystallographic direction. Our results indicate that the single crystal MgB2 superconductor shows anisotropic superconducting properties and thus can provide scientific basis for the research of its superconducting mechanism and its applications.
We theoretically study superconductivity in UTe$_2$, which is a recently-discovered strong candidate for an odd-parity spin-triplet superconductor. Theoretical studies for this compound faced difficulty because first-principles calculations predict a n insulating electronic state, incompatible with superconducting instability. To overcome this problem, we take into account electron correlation effects by a GGA$+U$ method and show the insulator-metal transition by Coulomb interaction. Using Fermi surfaces obtained as a function of $U$, we clarify topological properties of possible superconducting states. Fermi surface formulas for the three-dimensional winding number and three two-dimensional $mathbb{Z}_2$ numbers indicate topological superconductivity at an intermediate $U$ for all the odd-parity pairing symmetry in the $Immm$ space group. Symmetry and topology of superconducting gap node are analyzed and the gap structure of UTe$_2$ is predicted. Topologically protected low-energy excitations are highlighted, and experiments by bulk and surface probes are proposed to link Fermi surfaces and pairing symmetry. Based on the results, we also discuss multiple superconducting phases under magnetic fields, which were implied by recent experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا