ﻻ يوجد ملخص باللغة العربية
We address the issue of how triplet superconductivity emerges in an electronic system near a ferromagnetic quantum critical point (FQCP). Previous studies found that the superconducting transition is of second order, and Tc is strongly reduced near the FQCP due to pair-breaking effects from thermal spin fluctuations. In contrast, we demonstrate that near the FQCP, the system avoids pair-breaking effects by undergoing a first order transition at a much larger Tc. A second order superconducting transition emerges only at some distance from the FQCP.
We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Ac-susceptibility and resistivity measurements under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure $p_c =
We investigate the interplay between charge order and superconductivity near an antiferromagnetic quantum critical point using sign-problem-free Quantum Monte Carlo simulations. We establish that, when the electronic dispersion is particle-hole symme
By means of the magnetocaloric effect, we examine the nature of the superconducting-normal (S-N) transition of Sr2RuO4, a most promising candidate for a spin-triplet superconductor. We provide thermodynamic evidence that the S-N transition of this ox
We investigated the magnetic field dependence of the superconducting phase transition in heavy fermion CeCoIn_5 (T_c = 2.3 K) using specific heat, magneto-caloric effect, and thermal expansion measurements. The superconducting transition becomes firs
We study how superconducting Tc is affected as an electronic system in a tetragonal environment is tuned to a nematic quantum critical point (QCP). Including coupling of the electronic nematic variable to the relevant lattice strain restricts critica