ترغب بنشر مسار تعليمي؟ اضغط هنا

Smectic ordering in liquid crystal - aerosil dispersions II. Scaling analysis

112   0   0.0 ( 0 )
 نشر من قبل Germano Iannacchione
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquid crystals offer many unique opportunities to study various phase transitions with continuous symmetry in the presence of quenched random disorder (QRD). The QRD arises from the presence of porous solids in the form of a random gel network. Experimental and theoretical work support the view that for fixed (static) inclusions, quasi-long-range smectic order is destroyed for arbitrarily small volume fractions of the solid. However, the presence of porous solids indicates that finite-size effects could play some role in limiting long-range order. In an earlier work, the nematic - smectic-A transition region of octylcyanobiphenyl (8CB) and silica aerosils was investigated calorimetrically. A detailed x-ray study of this system is presented in the preceding Paper I, which indicates that pseudo-critical scaling behavior is observed. In the present paper, the role of finite-size scaling and two-scale universality aspects of the 8CB+aerosil system are presented and the dependence of the QRD strength on the aerosil density is discussed.



قيم البحث

اقرأ أيضاً

A high-resolution calorimetric study has been carried out on nano-colloidal dispersions of aerosils in the liquid crystal 4-textit{n}-pentylphenylthiol-4-textit{n}-octyloxybenzoate ($bar{8}$S5) as a function of aerosil concentration and temperature s panning the smectic-textit{C} to nematic phases. Over this temperature range, this liquid crystal possesses two continuous XY phase transitions: a fluctuation dominated nematic to smectic-textit{A} transition with $alpha approx alpha_{XY} = -0.013$ and a mean-field smectic-textit{A} to smectic-textit{C} transition. The effective critical character of the textit{N}-Smtextit{A} transition remains unchanged over the entire range of introduced quenched random disorder while the peak height and enthalpy can be well described by considering a cut-off length scale to the quasi-critical fluctuations. The robust nature of the textit{N}-Smtextit{A} transition in this system contrasts with cyanobiphenyl-aerosil systems and may be due to the mesogens being non-polar and having a long nematic range. The character of the Smtextit{A}-Smtextit{C} transition changes gradually with increasing disorder but remains mean-field-like. The heat capacity maximum at the Smtextit{A}-Smtextit{C} transition scales as $rho_S^{-0.5}$ with an apparent evolution from tricritical to a simple mean-field step behavior. These results may be generally understood as a stiffening of the liquid crystal (both the nematic elasticity as well as the smectic layer compression modulus $B$) with silica density.
68 - D. R. Link 1999
Ring patterns of concentric 2pi-solitons in molecular orientation, form in freely suspended chiral smectic-C films in response to an in-plane rotating electric field. We present measurements of the zero-field relaxation of ring patterns and of the dr iven dynamics of ring formation under conditions of synchronous winding, and a simple model which enables their quantitative description in low polarization DOBAMBC. In smectic C_A* TFMHPOBC we observe an odd-even layer number effect, with odd number layer films exhibiting order of magnitude slower relaxation rates than even layer films. We show that this rate difference is due to much larger spontaneous polarization in odd number layer films.
A high-resolution calorimetric spectroscopy study has been performed on pure glycerol and colloidal dispersions of an aerosil in glycerol covering a wide range of temperatures from 300 K to 380 K, deep in the liquid phase of glycerol. The colloidal g lycerol+aerosil samples with 0.05, 0.10, and 0.20 mass fraction of aerosil reveal glassy, activated dynamics at temperatures well above the $T_g$ of the pure glycerol. The onset of glass-like behavior appears to be due to the structural frustration imposed by the silica gel on the glycerol liquid. The aerosil gel increases the net viscosity of the mixture, placing the sample effectively at a lower temperature thus inducing a glassy state. Given the onset of this behavior at relatively low aerosil density (large mean-void length compared to the size of a glycerol molecule), this induced glassy behavior is likely due to a collective mode of glycerol molecules. The study of frustrated glass-forming systems may be a unique avenue for illuminating the physics of glasses.
153 - M.A. Osipov , M.V. Gorkunov 2007
General microscopic mechanism of ferroelectric ordering in chiral smectic C* liquid crystals is considered. It is shown that if the mesogenic molecules have a sufficiently low symmetry, the spontaneous polarization is proportional to one of the biaxi al vector order parameters of the smectic C phase. This order parameter may be determined by intermolecular interactions which are not sensitive to molecular chirality. At the same time, the polarization is also proportional to a pseudoscalar parameter which vanishes if the molecules are nonchiral. The general statistical theory of ferroelectric ordering is illustrated by two particular models. The first model is based on electrostatic quadrupole-quadrupole interactions, and it enables one to obtain explicit analytical expressions for the spontaneous polarization. In the second model, the molecular chirality and polarity are determined by a pair of off-center nonparallel dipoles. For this case, the spontaneous polarization is calculated numerically as a function of temperature. The theory provides a more general interpretation of the previous approaches including the classical Boulder model.
We present an x-ray study of liquid crystal membranes in the vicinity of hexatic-smectic phase transition by means of angular x-ray cross-correlation analysis (XCCA). By applying two-point angular intensity cross-correlation functions to the measured series of diffraction patterns the parameters of bond-orientational (BO) order in hexatic phase were directly determined. The temperature dependence of the positional correlation lengths was analyzed as well. The obtained correlation lengths show larger values for the higher-order Fourier components of BO order. These findings indicate a strong coupling between BO and positional order that has not been studied in detail up to now.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا