ﻻ يوجد ملخص باللغة العربية
We present an experimental investigation of the probability distribution of normal contact forces, $P(F)$, at the bottom boundary of static three dimensional packings of compressible granular materials. We find that the degree of deformation of individual grains plays a large role in determining the form of this distribution. For small amounts of deformation we find a small peak in $P(F)$ below the mean force with an exponential tail for forces larger than the mean force. As the degree of deformation is increased the peak at the mean force grows in height and the slope of the exponential tail increases.
We investigate how forces spread through frictionless granular packs at the jamming transition. Previous work has indicated that such packs are isostatic, and thus obey a null stress law which, independent of the packing history, causes rays of stres
The kinetic energy of a freely cooling granular gas decreases as a power law $t^{-theta}$ at large times $t$. Two theoretical conjectures exist for the exponent $theta$. One based on ballistic aggregation of compact spherical aggregates predicts $the
We present a systematic investigation of the distribution of normal forces at the boundaries of static packings of spheres. A new method for the efficient construction of large hexagonal-close-packed crystals is introduced and used to study the effec
Understanding granular materials aging poses a substantial challenge: Grain contacts form networks with complex topologies, and granular flow is far from equilibrium. In this letter, we experimentally measure a three-dimensional granular systems reve
We have made experimental observations of the force networks within a two-dimensional granular silo similar to the classical system of Janssen. Models like that of Janssen predict that pressure within a silo saturates with depth as the result of vert