ﻻ يوجد ملخص باللغة العربية
We analyze the posibility of employing the mesoscopic-nanoscopic ring of a normal metal in a doubly degenerate persistent current state with a third auxihilary level and in the presence of the Aharonov-Bohm flux equal to the half of the normal flux quantum $hbar c/e$ as a qubit. The auxiliary level can be effectively used for all fundamental quantum logic gate (qu-gate) operations which includes the initialization, phase rotation, bit flip and the Hadamard transformation as well as the double-qubit controlled operations (conditional bit flip). We suggest a tentative realization of the mechanism as either the mesoscopic structure of three quantum dots coherently coupled by mesoscopic tunnelling in crossed magnetic and electric fields, or as a nanoscopic structure of triple anionic vacancy (similar to $F_3$ centers in alkali halides) with one trapped electron in one spin projection state.
Experimental study of quantum Hall corrals reveals Aharonov-Bohm-Like (ABL) oscillations. Unlike the Aharonov-Bohm effect which has a period of one flux quantum, $Phi_{0}$, the ABL oscillations possess a flux period of $Phi_{0}/f$, where $f$ is the i
With an atomic force microscope a ring geometry with self-aligned in-plane gates was directly written into a GaAs/AlGaAs-heterostructure. Transport measurements in the open regime show only one transmitting mode and Aharonov-Bohm oscillations with mo
We propose a theoretical model to study the single-electron spectra of the concentric quantum double ring fabricated lately by self-assembled technique. Exact diagonalization method is employed to examine the Aharonov-Bohm effect in the concentric do
Spin-1/2 electrons are scattered through one or two diamond-like loops, made of quantum dots connected by one-dimensional wires, and subject to both an Aharonov-Bohm flux and (Rashba and Dresselhaus) spin-orbit interactions. With some symmetry betwee
Very much like the ubiquitous quantum interference of a single particle with itself, quantum interference of two independent, but indistinguishable, particles is also possible. This interference is a direct result of quantum exchange statistics, howe