ﻻ يوجد ملخص باللغة العربية
We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are calculated by a Monte-Carlo simulation and by a master-equation approach, using the correponding microscopic quantities and the shape of the obstacles as input. We define a measure of separation quality and investigate its dependence on the applied force and the shape of the obstacles.
Liquid-liquid phase separation of liquids exhibiting interconversion between alternative states has been proposed as an underlying mechanism for fluid polyamorphism, and may be of relevance to protein function and intracellular organization. However,
Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently
As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in
We investigate experimentally a two-dimensional rocking ratchet for cold atoms, realized by using a driven three-beam dissipative optical lattice. AC forces are applied in perpendicular directions by phase-modulating two of the lattice beams. As pred
Motivated by recent work [D. Cubero et al., Phys. Rev. E 82, 041116 (2010)], we examine the mechanisms which determine current reversals in rocking ratchets as observed by varying the frequency of the drive. We found that a class of these current rev