ﻻ يوجد ملخص باللغة العربية
The paper deals with the ground and the first excited state of the polaron in the one dimensional Holstein model. Various variational methods are used to investigate both the weak coupling and strong coupling case, as well as the crossover regime between them. Two of the methods, which are presented here for the first time, introduce interesting elements to the understanding of the nature of the polaron. Reliable numerical evidence is found that, in the strong coupling regime, the ground and the first excited state of the self-trapped polaron are well described within the adiabatic limit. The lattice vibration modes associated with the self-trapped polarons are analyzed in detail, and the frequency softening of the vibration mode at the central site of the small polaron is estimated. It is shown that the first excited state of the system in the strong coupling regime corresponds to the excitation of the soft phonon mode within the polaron. In the crossover regime, the ground and the first excited state of the system can be approximated by the anticrossing of the self-trapped and the delocalized polaron state. In this way, the connection between the behavior of the ground and the first excited state is qualitatively explained.
We study Holstein polarons in three-dimensional anisotropic materials. Using a variational exact diagonalization technique we provide highly accurate results for the polaron mass and polaron radius. With these data we discuss the differences between
We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of a Rashba-like spin orbit interaction. Our results corroborate with previous work performed with the Momentum Average approxim
The behavior of the 1D Holstein polaron is described, with emphasis on lattice coarsening effects, by distinguishing between adiabatic and nonadiabatic contributions to the local correlations and dispersion properties. The original and unifying syste
An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving thre
We propose a nonequilibrium variational polaron transformation, based on an ansatz for nonequilibrium steady state (NESS) with an effective temperature, to study quantum heat transport at the nanoscale. By combining the variational polaron transforme