ﻻ يوجد ملخص باللغة العربية
Noise induced changes in the critical and oscillatory behavior of a Prey-Predator system are studied using power spectrum density and Spectral Amplification Factor (SAF) analysis. In the absence of external noise, the population densities exhibit three kinds of asymptotic behavior, namely: Absorbing State, Fixed Point (FP) and an Oscillatory Regime (OR) with a well defined proper (natural) frequency. The addition of noise destabilizes the FP phase inducing a transition to a new OR. Surprisingly, it is found that when a periodic signal is added to the control parameter, the system responds robustly, without relevant changes in its behavior. Nevertheless, the Coherent Stochastic Resonance phenomenon is found only at the proper frequency. Also, a method based on SAF allows us to locate very accurately the transition points between the different regimes.
In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivate
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing t
We study the survival of a prey that is hunted by N predators. The predators perform independent random walks on a square lattice with V sites and start a direct chase whenever the prey appears within their sighting range. The prey is caught when a p
We study a predator-prey model with Holling type I functional response, an alternative food source for the predator, and multiple Allee effects on the prey. We show that the model has at most two equilibrium points in the first quadrant, one is alway
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the l