ﻻ يوجد ملخص باللغة العربية
We consider mesoscopic fluctuations of Coulomb drag transresistivity between two layers at a Landau level filling factor $ u=1/2$ each. We find that at low temperature sample to sample fluctuations exceed both the ensemble average and the corresponding fluctuations at B=0. At the experimentally relevant temperatures, the variance of the transresistivity is proportional to $T^{-1/2}$. We find the dependence of this variance on density and magnetic field to reflect the attachment of two flux quanta to each electron.
We present the first experimental study of mesoscopic fluctuations of Coulomb drag in a system with two layers of composite fermions, which are seen when either the magnetic field or carrier concentration are varied. These fluctuations cause an alter
We consider mesoscopic fluctuations of the Coulomb drag coefficient $rho_D$ in the system of two separated two-dimensional electron gases. It is shown that at low temperatures sample to sample fluctuations of $rho_D$ exceed its ensemble average. It m
We show that the Coulomb interaction between two circuits separated by an insulating layer leads to unconventional thermoelectric effects, such as the cooling by thermal current effect, the transverse thermoelectric effect and Maxwells demon effect.
We have observed reproducible fluctuations of the Coulomb drag, both as a function of magnetic field and electron concentration, which are a manifestation of quantum interference of electrons in the layers. At low temperatures the fluctuations exceed
We have studied temperature dependence of both diagonal and Hall resistivity in the vicinity of $ u=1/2$. Magnetoresistance was found to be positive and almost independent of temperature: temperature enters resistivity as a logarithmic correction. At