ترغب بنشر مسار تعليمي؟ اضغط هنا

Nothing moves a surface: vacancy mediated surface diffusion

246   0   0.0 ( 0 )
 نشر من قبل Ellak Somfai
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. van Gastel




اسأل ChatGPT حول البحث

We report scanning tunneling microscopy observations, which imply that all atoms in a close-packed copper surface move frequently, even at room temperature. Using a low density of embedded indium `tracer atoms, we visualize the diffusive motion of surface atoms. Surprisingly, the indium atoms seem to make concerted, long jumps. Responsible for this motion is an ultra-low density of surface vacancies, diffusing rapidly within the surface. This interpretation is supported by a detailed analysis of the displacement distribution of the indium atoms, which reveals a shape characteristic for the vacancy mediated diffusion mechanism that we propose.



قيم البحث

اقرأ أيضاً

100 - R. van Gastel 2001
We have used the indium/copper surface alloy to study the dynamics of surface vacancies on the Cu(001) surface. Individual indium atoms that are embedded within the first layer of the crystal, are used as probes to detect the rapid diffusion of surfa ce vacancies. STM measurements show that these indium atoms make multi-lattice-spacing jumps separated by long time intervals. Temperature dependent waiting time distributions show that the creation and diffusion of thermal vacancies form an Arrhenius type process with individual long jumps being caused by one vacancy only. The length of the long jumps is shown to depend on the specific location of the indium atom and is directly related to the lifetime of vacancies at these sites on the surface. This observation is used to expose the role of step edges as emitting and absorbing boundaries for vacancies.
Deposition/removal of metal atoms on the hex reconstructed (100) surface of Au, Pt and Ir should present intriguing aspects, since a new island implies hex -> square deconstruction of the substrate, and a new crater the square -> hex reconstruction o f the uncovered layer. To obtain a microscopic understanding of how islands/craters form in these conditions, we have conducted simulations of island and crater growth on Au(100), whose atomistic behavior, including the hex reconstruction on top of the square substrate, is well described by mean s of classical many-body forces. By increasing/decreasing the Au coverage on Au(100), we find that island/craters will not grow unless they exceed a critical size of about 8-10 atoms. This value is close to that which explains the nonlinear coverage dependence observed in molecular adsorption on the closely related surface Pt (100). This threshold size is rationalized in terms of a transverse step correlation length, measuring the spatial extent where reconstruction of a given plane is disturbed by the nearby step.
We report an x-ray scattering study of the microscopic structure of the surface of a liquid alkali metal. The bulk liquid structure factor of the eutectic K67Na33 alloy is characteristic of an ideal mixture, and so shares the properties of an element al liquid alkali metal. Analysis of off-specular diffuse scattering and specular x-ray reflectivity shows that the surface roughness of the K-Na alloy follows simple capillary wave behavior with a surface structure factor indicative of surface induced layering. Comparison of thelow-angle tail of the K67Na33 surface structure factor with the one measured for liquid Ga and In previously suggests that layering is less pronounced in alkali metals. Controlled exposure of the liquid to H2 and O2 gas does not affect the surface structure, indicating that oxide and hydride are not stable at the liquid surface under these experimental conditions.
88 - E. Somfai 2001
We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(001) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.
The enhancement of surface diffusion (DS) over the bulk (DV) in metallic glasses (MGs) is well documented and likely to strongly influence the properties of glasses grown by vapor deposition. Here, we use classical molecular dynamics simulations to i dentify different factors influencing the enhancement of surface diffusion in MGs. MGs have a simple atomic structure and belong to the category of moderately fragile glasses that undergo pronounced slowdown of bulk dynamics with cooling close to the glass transition temperature (Tg). We observe that DS exhibits a much more moderate slowdown compared to DV when approaching Tg, and DS/DV at Tg varies by two orders of magnitude among the MGs investigated. We demonstrate that both the surface energy and the fraction of missing bonds for surface atoms show good correlation to DS/DV, implying that the loss of nearest neighbors at the surface directly translates into higher mobility, unlike the behavior of network- and hydrogen-bonded organic glasses. Fragility, a measure of the slowdown of bulk dynamics close to Tg, also correlates to DS/DV, with more fragile systems having larger surface enhancement of mobility. The deviations observed in the fragility and DS over DV relationship are shown to be correlated to the extent of segregation or depletion of the mobile element at the surface. Finally, we explore the relationship between the diffusion pre-exponential factor (D0) and activation energy (Q) and compare to a ln(D0)-Q correlation previously established for bulk glasses, demonstrating similar correlations from MD as in the experiments and that the surface and bulk have very similar ln(D0)-Q correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا