ﻻ يوجد ملخص باللغة العربية
We present data of transport measurements through a metallic nanobridge exhibiting diffusive electron transport. A logarithmic temperature dependence and a zero-bias anomaly in the differential conductance are observed, independent of magnetic field. The data can be described by a single scaling law. The theory of electron-electron interaction in disordered systems, adapted to the case of finite-size systems in non-equilibrium, yields quantitative agreement with experiment. Measurements of universal conductance functuations support the assumptions of the theory about the electronic phase coherence.
We have observed interaction effects in the differential conductance $G$ of short, disordered metal bridges in a well-controlled non-equilibrium situation, where the distribution function has a double Fermi step. A logarithmic scaling law is found bo
A one-dimensional semiconductor nanowire proximitized by a nearby superconductor may become a topological superconductor hosting localized Majorana zero modes at the two wire ends in the presence of spin-orbit coupling and Zeeman spin splitting (aris
The zero-bias conductance peak in d-wave superconductors splits in an applied magnetic field. In this work, the experimentally observed universal relation delta ~ B0^(1/2) for strip-shaped samples is derived analytically based on the long-ranged curr
Magnetic resonance is a widely-established phenomenon that probes magnetic properties such as magnetic damping and anisotropy. Even though the typical resonance frequency of a magnet ranges from gigahertz to terahertz, experiments also report the res
Graphene provides a fascinating testbed for new physics and exciting opportunities for future applications based on quantum phenomena. To understand the coherent flow of electrons through a graphene device, we employ a nanoscale probe that can access