ﻻ يوجد ملخص باللغة العربية
In this article we show that the phase-ordering scaling state for binary fluids is not necessarily unique and that local correlations in the initial conditions can be responsible for selecting the scaling state. We describe a new scaling state for symmetric volume fractions that consists of drops of the one component suspended in a matrix of the other. The underlying reason for the existence of the newly observed scaling state is that the main coarsening mechanism of binary fluids which is the deformation of interfaces by flow is not acting, and this leads to a new scaling law. An initial droplet state can be formed by a number of physical phenomena. In a unified description this can be undestood as local correlations in the initial conditions. Local correlations with length $xi$ are believed to be irrelevant when the typical length scale L of the system is large ($Lgg xi$). Our result shows that these initial correlations, contrary to current thinking, can be important even at late times.
The range of the magnitude of the liquid viscosity as a function of the temperature (T) is one of the most impressive of any physical property, changing by approximately 17 orders of magnitude from its extrapolated value at infinite temperature to th
The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concent
We present a method for calculating the Aharonov-Anandan phase for time-independent Hamiltonians that avoids the calculation of evolution operators. We compare the generic method used to calculate the Aharonov-Anandan phase with the method proposed h
We study the phase-ordering kinetics following a temperature quench of O(N) continuous symmetry models with and 4 on graphs. By means of extensive simulations, we show that the global pattern of scaling behaviours is analogous to the one found on usu
In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fu