ﻻ يوجد ملخص باللغة العربية
We discuss the properties of eigenphases of S--matrices in random models simulating classically chaotic scattering. The energy dependence of the eigenphases is investigated and the corresponding velocity and curvature distributions are obtained both theoretically and numerically. A simple formula describing the velocity distribution (and hence the distribution of the Wigner time delay) is derived, which is capable to explain the algebraic tail of the time delay distribution observed recently in microwave experiments. A dependence of the eigenphases on other external parameters is also discussed. We show that in the semiclassical limit (large number of channels) the curvature distribution of $S$--matrix eigenphases is the same as that corresponding to the curvature distribution of the underlying Hamiltonian and is given by the generalized Cauchy distribution.
Spectral properties of Hermitian Toeplitz, Hankel, and Toeplitz-plus-Hankel random matrices with independent identically distributed entries are investigated. Combining numerical and analytic arguments it is demonstrated that spectral statistics of a
We study the fidelity decay of the $k$-body embedded ensembles of random matrices for bosons distributed over two single-particle states. Fidelity is defined in terms of a reference Hamiltonian, which is a purely diagonal matrix consisting of a fixed
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability $mathcal{P}_N(K,lambda)$ that a large $N times N$ adjacency matrix of sparse random graphs has $K$ eigenvalues below a threshold $l
The famous question of Mark Kac Can one hear the shape of a drum? addressing the unique connection between the shape of a planar region and the spectrum of the corresponding Laplace operator can be legitimately extended to scattering systems. In the
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random