ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermion stars as gravitational lenses

77   0   0.0 ( 0 )
 نشر من قبل Hrvoje Nikolic
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study in detail gravitational lensing caused by a supermassive fermion star and compare it with lensing by a black hole of the same mass. It is argued that lensing effects, being very distinct, may shed some light on the yet unexplained nature of the compact dark massive object at the Galactic center.

قيم البحث

اقرأ أيضاً

Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravita tional properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.
348 - Anna Barnacka 2018
The inner regions of active galaxies host the most extreme and energetic phenomena in the universe including, relativistic jets, supermassive black hole binaries, and recoiling supermassive black holes. However, many of these sources cannot be resolv ed with direct observations. I review how strong gravitational lensing can be used to elucidate the structures of these sources from radio frequencies up to very high energy gamma rays. The deep gravitational potentials surrounding galaxies act as natural gravitational lenses. These gravitational lenses split background sources into multiple images, each with a gravitationally-induced time delay. These time delays and positions of lensed images depend on the source location, and thus, can be used to infer the spatial origins of the emission. For example, using gravitationally-induced time delays improves angular resolution of modern gamma-ray instruments by six orders of magnitude, and provides evidence that gamma-ray outbursts can be produced at even thousands of light years from a supermassive black hole, and that the compact radio emission does not always trace the position of the supermassive black hole. These findings provide unique physical information about the central structure of active galaxies, force us to revise our models of operating particle acceleration mechanisms, and challenge our assumptions about the origin of compact radio emission. Future surveys, including LSST, SKA, and Euclid, will provide observations for hundreds of thousands of gravitationally lensed sources, which will allow us to apply strong gravitational lensing to study the multi-wavelength structure for large ensembles of sources. This large ensemble of gravitationally lensed active galaxies will allow us to elucidate the physical origins of multi-wavelength emissions, their connections to supermassive black holes, and their cosmic evolution.
A non-topological soliton model with a repulsive scalar self-interaction of the Emden type provides a constant density core,similarly as the empirical Burkert profile of dark matter haloes. As a further test, we derive the gravitational lens properti es of our model, in particular, the demarcation curves between `weak and `strong lensing. Accordingly, strong lensing with typically three images is almost three times more probable for our solitonic model than for the Burkert fit. Moreover, some prospective consequences of a possible flattening of dark matter haloes are indicated.
We present the analysis of the light curves of 9 high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-1 74, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For 7 events, we measure the Einstein radii and the lens-source relative proper motions. Among them, 5 events are found to have Einstein radii less than 0.2 mas, making the lenses candidates of very low-mass stars or brown dwarfs. For MOA-2011-BLG-274, especially, the small Einstein radius of $theta_{rm E}sim 0.08$ mas combined with the short time scale of $t_{rm E}sim 2.7$ days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of $sim 0.84 M_odot$ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we find planetary signals for none of events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
104 - H.G. Khachatryan 2021
We consider a machine learning algorithm to detect and identify strong gravitational lenses on sky images. First, we simulate different artificial but very close to reality images of galaxies, stars and strong lenses, using six different methods, i.e . two for each class. Then we deploy a convolutional neural network architecture to classify these simulated images. We show that after neural network training process one achieves about 93 percent accuracy. As a simple test for the efficiency of the convolutional neural network, we apply it on an real Einstein cross image. Deployed neural network classifies it as gravitational lens, thus opening a way for variety of lens search applications of the deployed machine learning scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا