ترغب بنشر مسار تعليمي؟ اضغط هنا

BeppoSAX Observations of Mkn 421: clues on the particle acceleration ?

85   0   0.0 ( 0 )
 نشر من قبل Giovanni Fossati
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Fossati




اسأل ChatGPT حول البحث

Mkn 421 was repeatedly observed with BeppoSAX in 1997-1998. We present highlights of the results of the thorough temporal and spectral analysis discussed by Fossati et al. (1999) and Maraschi et al. (1999), focusing on the flare of April 1998, which was simultaneously observed also at TeV energies. The detailed study of the flare in different energy bands reveals a few very important new results: (a) hard photons lag the soft ones by 2-3 ks *a behavior opposite to what is normally found in High energy peak BL Lacs X-ray spectra*; (b) the flux decay of the flare can be intrinsically achromatic if a stationary underlying emission component is present. Moreover the spectral evolution during the flare has been followed by extracting X-ray spectra on few ks intervals, allowing to detect for the first time the peak of the synchrotron component shifting to higher energies during the rising phase, and then receding. The spectral analysis confirms the delay in the flare at the higher energies, as above a few keV the spectrum changes only after the peak of the outburst has occurred. The spectral and temporal information obtained challenge the simplest models currently adopted for the (synchrotron) emission and most importantly provide clues on the particle acceleration process. A theoretical picture accounting for all the observational constraints is discussed, where electrons are injected at low energies and then progressively accelerated during the development of the flare.



قيم البحث

اقرأ أيضاً

The X-ray observations of Mkn 421 show significant spectral curvature that can be reproduced by a log-parabola function. The spectra can also be fitted by an analytical model considering synchrotron emission from an electron distribution that is acce lerated at a shock front with an energy-dependent diffusion(EDD model). The spectral fit of NuSTAR and Swift-XRT observations using EDD model during different flux states reveal the model parameters are strongly correlated. We perform a detailed investigation of this correlation to decipher the information hidden underneath. The model predicts the synchrotron peak energy to be correlated with the peak spectral curvature which is consistent with the case of Mkn 421. Expressing the energy dependence of the diffusion in terms of the magnetohydrodynamic turbulence energy index, it appears the turbulence shifts from Kolmogorov/Kraichnan type to Bohm limit during high flux states. Further, the correlation between the best-fit parameters of EDD model lets us derive an expression for the product of source magnetic field(B) and jet Doppler factor($delta$) in terms of synchrotron and Compton peak energies. The synchrotron peak energy is obtained using the simultaneous Swift-XRT and NuSTAR observations; whereas, the Compton peak energy is estimated by performing a linear regression analysis of the archival spectral peaks. The deduced $delta$B varies over a wide range; however, it satisfies reasonably well with the values estimated solely from the spectral peak energies independent of the EDD model. This highlights the plausible connection between the microscopic description of the electron diffusion with the macroscopic quantities deciding the broadband spectrum of Mkn 421.
96 - E. Massaro , M. Perri , P. Giommi 2003
We report the results of a new analysis of 13 wide band BeppoSAX observations of the BL Lac object Mkn 421. The data from LECS, MECS and PDS, covering an energy interval from 0.1 to over 100 keV, have been used to study the spectral variability of th is source. We show that the energy distributions in different luminosity states can be fitted very well by a log-parabolic law F(E)=K*(E/E_1)^(-(a+b*Log(E/E_1))), which provides good estimates of the energy and flux of the synchrotron peak in the SED. In the first four short observations of 1997 Mkn 421 was characterized by a very stable spectral shape, with average values a=2.25 and b=0.45. In the observations of 1998 smaller values for both parameters, a~2.07 and b~0.34, were found and the peak energy in the SED was in the range 0.5-0.8 keV. Also in the observations of May 1999 and April-May 2000 the log-parabolic model gave a satisfactory description of the overall SED of Mkn 421. In particular, in the observations of spring 2000 the source was brighter than the other observations and showed a large change of the spectral curvature. Spectral parameters estimates gave a~1.8 and b~0.19 and the energy of the maximum in the SED moved to the range 1-5.5 keV. We give a possible interpretation of the log-parabolic spectral model in terms of particle acceleration mechanisms. An energy distribution of emitting particles with curvature close to the one observed can be explained by a simple model for statistical acceleration with the assumption that the probability for a particle to increase its energy is a decreasing function of the energy itself. A consequence of this mechanism is the existence of a linear relation between the spectral parameters a and b, well confirmed by the estimated values of these two parameters for Mkn421.(Abridged)
We present BeppoSAX and XMM-Newton observations of MKN 231. These observations and in particular the BeppoSAX PDS data allowed us to unveil, for the first time, the highly absorbed (N$_Hsim 2times10^{24}$ cm$^{-2}$) AGN component. We find that: a) th e AGN powering MKN231 has an intrinsic 2-10 keV luminosity of $1^{+1}_{-0.5}times 10^{44}$ erg/s; b) the strong starburst activity contributes significantly in the 0.1-10 keV energy range. We propose that the starburst activity strongly contributes to the far infrared luminosity of MKN 231; this is also suggested by the multiwavelength properties of MKN 231.
The X-ray spectral curvature of blazars is traditionally explained by an empirical log-parabola function characterized by three parameters, namely the flux, curvature and spectral index at a given energy. Since their exact relationship with the under lying physical quantities is unclear, interpreting the physical scenario of the source through these parameters is difficult. To attain an insight on the X-ray spectral shape, we perform a detailed study of the X-ray spectra of the blazar MKN 421, using an analytical model where the electron diffusion from the particle acceleration site is energy-dependent. The resultant synchrotron spectrum is again determined by three parameters, namely, the energy index of the escape time scale, the quantity connecting the electron energy to the observed photon energy and the normalization. The X-ray observations of MKN 421, during July 2012 - April 2013 by NuSTAR and Swift-XRT are investigated using this model and we find a significant correlation between model parameters and the observational quantities. Additionally, a strong anti-correlation is found between the fit parameters defining the spectral shape, which was not evident from earlier studies using empirical models. This indicates the flux variations in MKN 421 and possibly other blazars, may arise from a definite physical process that needs to be further investigated.
98 - E. Massaro , M. Perri , P. Giommi 2004
We present the results of a spectral and temporal study of the complete set of BeppoSAX NFI (11) and WFC (71) observations of the BL Lac object Mkn 501. The WFC 2-28 keV data, reported here for the first time, were collected over a period of about fi ve years, from September 1996 to October 2001. These observations, although not evenly distributed, show that Mkn 501, after going through a very active phase from spring 1997 to early 1999, remained in a low brightness state until late 2001. The data from the LECS, MECS and PDS instruments, covering the wide energy interval 0.1-150 keV, have been used to study in detail the spectral variability of the source. We show that the X-ray energy distribution of Mkn 501 is well described by a log-parabolic law in all luminosity states. This model allowed us to obtain good estimates of the SED synchrotron peak energy and of its associated power. The strong spectral variability observed, consisting of strictly correlated changes between the synchrotron peak energy and bolometric flux, suggests that the main physical changes are not only due to variations of the maximum Lorentz factor of the emitting particles but that other quantities must be varying as well. During the 1997 flare the high energy part of the spectrum of Mkn 501 shows evidence of an excess above the best fit log-parabolic law suggesting the existence of a second emission component that may be responsible for most of the observed variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا