ترغب بنشر مسار تعليمي؟ اضغط هنا

The stellar populations of spiral galaxies

70   0   0.0 ( 0 )
 نشر من قبل Eric F. Bell
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used a large sample of low-inclination spiral galaxies with radially-resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and regarding the importance of dust all compromise the absolute ages and metallicities derived in this work, however our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass, however the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.

قيم البحث

اقرأ أيضاً

(Abridged) As part of an ongoing effort to study the stellar nuclei of very late-type, bulge-less spirals, we present results from a high-resolution spectroscopic survey of nine such nuclear star clusters, undertaken with VLT/UVES. We fit the spectra with population synthesis models and measure Lick-type indices to determine mean luminosity-weighted ages, which range from 4.1*10^7 to 1.1*10^10 years and are insensitive to assumed metallicity or internal extinction. The average metallicity of nuclear clusters in late-type spirals is slightly sub-solar (<Z> = 0.015) but shows significant scatter. The fits also show that the nuclear cluster spectra are best described by a mix of several generations of stars. This is supported by the fact that only models with composite stellar populations yield mass-to-light ratios that match those obtained from dynamical measurements. The last star formation episode was on average 34 Myr ago, while all clusters experienced some star formation in the last 100 Myr. We thus conclude that the nuclear clusters undergo repeated episodes of star formation. The robustness with respect to possible contamination from the underlying galaxy disk is demonstrated by comparison to spectra obtained with HST/STIS. Combining these results with those from Walcher et al. (2005), we have thus shown that the stellar nuclei of these bulge-less galaxies are massive and dense star clusters that form stars recurrently until the present day. This unique set of properties is likely due to the central location of these clusters in their host galaxies.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Ga laxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These sp ectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.
We perform a fossil record analysis for ~800 low-redshift spiral galaxies, using STARLIGHT applied to integral field spectroscopic observations from the SDSS-IV MaNGA survey to obtain fully spatially-resolved high-resolution star formation histories (SFHs). From the SFHs, we are able to build maps indicating the present-day distribution of stellar populations of different ages in each galaxy. We find small negative mean age gradients in most spiral galaxies, especially at high stellar mass, which reflects the formation times of stellar populations at different galactocentric radii. We show that the youngest (<10^{8.5} years) populations exhibit significantly more extended distributions than the oldest (>10^{9.5} years), again with a strong dependence on stellar mass. By interpreting the radial profiles of time slices as indicative of the size of the galaxy at the time those populations had formed, we are able to trace the simultaneous growth in mass and size of the spiral galaxies over the last 10 Gyr. Despite finding that the evolution of the measured light-weighted radius is consistent with inside-out growth in the majority of spiral galaxies, the evolution of an equivalent mass-weighted radius has changed little over the same time period. Since radial migration effects are likely to be small, we conclude that the growth of disks in spiral galaxies has occurred predominantly through an inside-out mode (with the effect greatest in high-mass galaxies), but this has not had anywhere near as much impact on the distribution of mass within spiral galaxies.
We investigate the stellar populations of passive spiral galaxies as a function of mass and environment, using integral field spectroscopy data from the Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey. Our sample consists of $52$ cl uster passive spirals and $18$ group/field passive spirals, as well as a set of S0s used as a control sample. The age and [Z/H] estimated by measuring Lick absorption line strength indices both at the center and within $1R_{rm e}$ do not show a significant difference between the cluster and the field/group passive spirals. However, the field/group passive spirals with log(M$_star$/M$_odot)gtrsim10.5$ show decreasing [$alpha$/Fe] along with stellar mass, which is $sim0.1$ dex smaller than that of the cluster passive spirals. We also compare the stellar populations of passive spirals with S0s. In the clusters, we find that passive spirals show slightly younger age and lower [$alpha$/Fe] than the S0s over the whole mass range. In the field/group, stellar populations show a similar trend between passive spirals and S0s. In particular, [$alpha$/Fe] of the field/group S0s tend to be flattening with increasing mass above log(M$_star$/M$_odot)gtrsim10.5$, similar to the field/group passive spirals. We relate the age and [$alpha$/Fe] of passive spirals to their mean infall time in phase-space; we find a positive correlation, in agreement with the prediction of numerical simulations. We discuss the environmental processes that can explain the observed trends. The results lead us to conclude that the formation of the passive spirals and their transformation into S0s may significantly depend on their environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا