ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Wide-Separation Gravitational Lens Candidate: RXJ 0921+4529

101   0   0.0 ( 0 )
 نشر من قبل Jose A. Munoz
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The lens candidate RXJ 0921+4529 consists of two z_s=1.66 quasar separated by 6.93 with an H band magnitude difference of Delta m=1.39. The lens appears to be a z_l=0.31 X-ray cluster, including a m_H=18.5 late-type galaxy lying between the quasar images. We detect an extended source overlapping the faint quasar but not the bright quasar. If this extended source is the host galaxy of the fainter quasar, then the system is a quasar binary rather than a gravitational lens.



قيم البحث

اقرأ أيضاً

154 - J.P. McKean 2004
We present observations of CLASS B2108+213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcse c with a faint third component in between which we believe is emission from a lensing galaxy. 5-GHz VLBA observations reveal milliarcsecond-scale structure in the two lensed images that is consistent with gravitational lensing. Optical emission from the two lensed images and two lensing galaxies within the Einstein radius is detected in Hubble Space Telescope imaging. Furthermore, an optical gravitational arc, associated with the strongest lensed component, has been detected. Surrounding the system are a number of faint galaxies which may help explain the wide image separation. A plausible mass distribution model for CLASS B2108+213 is also presented.
114 - Lutz Wisotzki 2002
We report the discovery of a new gravitationally lensed QSO, at a redshift z = 1.689, with four QSO components in a cross-shaped arrangement around a bright galaxy. The maximum separation between images is 2.6 arcsec, enabling a reliable decompositio n of the system. Three of the QSO components have g = 19.6, while component A is about 0.6 mag brighter. The four components have nearly identical colours, suggesting little if any dust extinction in the foreground galaxy. The lensing galaxy is prominent in the i band, weaker in r and not detected in g. Its spatial profile is that of an elliptical galaxy with a scale length of $sim$ 12 kpc. Combining the measured colours and a mass model for the lens, we estimate a most likely redshift range of 0.3 < z < 0.4. Predicted time delays between the components are $la$ 10 days. The QSO shows evidence for variability, with total g band magnitudes of 17.89 and 17.71 for two epochs separated by $sim 2$ months. However, the relative fluxes of the components did not change, indicating that the variations are intrinsic to the QSO rather than induced by microlensing.
234 - C. Alard , S. Mao , J. Guibert 1995
We present the light curve of an unusual variable object, DUO 2, detected during the search for microlensing events by the DUO project. The star remained stable for more than 150 days before it brightened by more than two magnitudes in 6 days in the B and R bands. The light curves are achromatic during the variability. We consider possible explanations of the photometric behavior, with particular emphasis on the binary lens interpretation of the event. The masses of the lenses are quite small, with the companion possibly in the range of a brown dwarf or even a few times of Jupiter. We report evidence of blending of the source by a companion through the first detection of shift in the light centroid among all the microlensing experiments. This shift sets a lower limit of $0.3^{primeprime}$ on the separation between the stars. The best lens model obtained requires moderate blending, which was what motivated us to check the centroid shift that was subsequently found. The best lens model predicts a separation of $1^{primeprime}$ between the two blended stars. This prediction was recently tested using two CCD images taken under good seeing conditions. Both images show two components. Their separation and position angle are in good agreement with our model.
We report the discovery of a new gravitationally lensed quasar from the Sloan Digital Sky Survey, SDSS J090334.92+502819.2. This object was targeted for SDSS spectroscopy as a Luminous Red Galaxy (LRG), but manual examination of the spectrum showed t he presence of a quasar at z= 3.6 in addition to a red galaxy at z=0.388, and the SDSS image showed a second possible quasar image nearby. Follow-up imaging and spectroscopy confirmed the lensing hypothesis. In images taken at the ARC 3.5-meter telescope, two quasars are separated by 2.8 arc-seconds; the lensing galaxy is clearly seen and is blended with one of the quasar images. Spectroscopy taken at the Keck II telescope shows that the quasars have identical redshifts of z=3.6 and both show the presence of the same broad absorption line-like troughs. We present simple lens models which account for the geometry and magnifications. The lens galaxy lies near two groups of galaxies and may be a part of them. The models suggest that the groups may contribute considerable shear and may have a strong effect on the lens configuration.
The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unre lated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic Bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 -- 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with mu >~ 8 mas/yr. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In <~12 years the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا