ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Population Aging Models for Wide-Angle Tails

85   0   0.0 ( 0 )
 نشر من قبل Andrew Young
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew Young




اسأل ChatGPT حول البحث

Color-color diagrams have been useful in studying the spectral shapes in radio galaxies. At the workshop we presented color-color diagrams for two wide-angle tails, 1231+674 and 1433+553, and found that the standard aging models do not adequately represent the observed data. Although the JP and KP models can explain some of the observed points in the color-color diagram, they do not account for those found near the power-law line. This difficulty may be attributable to several causes. Spectral tomography has been previously used to discern two separate electron populations in these sources. The combination spectra from two such overlying components can easily resemble a range of power-laws. In addition, any non-uniformity in the magnetic field strength can also create a power-law-like spectrum. We will also discuss the effects that angular resolution has on the shape of the spectrum.



قيم البحث

اقرأ أيضاً

Wide-angle portraits often enjoy expanded views. However, they contain perspective distortions, especially noticeable when capturing group portrait photos, where the background is skewed and faces are stretched. This paper introduces the first deep l earning based approach to remove such artifacts from freely-shot photos. Specifically, given a wide-angle portrait as input, we build a cascaded network consisting of a LineNet, a ShapeNet, and a transition module (TM), which corrects perspective distortions on the background, adapts to the stereographic projection on facial regions, and achieves smooth transitions between these two projections, accordingly. To train our network, we build the first perspective portrait dataset with a large diversity in identities, scenes and camera modules. For the quantitative evaluation, we introduce two novel metrics, line consistency and face congruence. Compared to the previous state-of-the-art approach, our method does not require camera distortion parameters. We demonstrate that our approach significantly outperforms the previous state-of-the-art approach both qualitatively and quantitatively.
The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts, breaking the translational invariance of galaxy clustering down to a rotational invariance around the observer. This becomes important when the line-of-sight di rection varies significantly across a survey, leading to what are known as `wide angle effects in redshift space distortions. Wide-angle effects will also be present in measurements of the momentum field, i.e. the galaxy density-weighted velocity field, in upcoming peculiar velocity surveys. In this work we study how wide-angle effects modify the predicted correlation function and power spectrum for momentum statistics, both in auto-correlation and in cross-correlation with the density field. Using both linear theory and the Zeldovich approximation, we find that deviations from the plane-parallel limit are large and could become important in data analysis for low redshift surveys. We point out that even multipoles in the cross-correlation between density and momentum are non-zero regardless of the choice of line of sight, and therefore contain new cosmological information that could be exploited. We discuss configuration-space, Fourier-space and spherical analyses, providing exact expressions in each case rather than relying on an expansion in small angles. We hope these expressions will be of use in the analysis of upcoming surveys for redshift-space distortions and peculiar velocities.
One of the important issues regarding the final evolution of stars is the impact of binarity. A rich zoo of peculiar, evolved objects are born from the interaction between the loosely bound envelope of a giant, and the gravitational pull of a compani on. However, binary interactions are not understood from first principles, and the theoretical models are subject to many assumptions. It is currently agreed upon that hot subdwarf stars can only be formed through binary interaction, either through common envelope ejection or stable Roche-lobe overflow (RLOF) near the tip of the red giant branch (RGB). These systems are therefore an ideal testing ground for binary interaction models. With our long term study of wide hot subdwarf (sdB) binaries we aim to improve our current understanding of stable RLOF on the RGB by comparing the results of binary population synthesis studies with the observed population. In this article we describe the current model and possible improvements, and which observables can be used to test different parts of the interaction model.
106 - V. Orlyanchik , , Z. Ovadyahu 2003
A new protocol for an aging experiment is studied in the electron-glass phase of indium-oxide films. In this protocol, the sample is exposed to a non-ohmic electric field F for a waiting time t_{w} during which the system attempts to reach a steady s tate (rather than relax towards equilibrium). The relaxation of the excess conductance dG after ohmic conditions are restored exhibit simple aging as long as F is not too large.
Using the AAOmega instrument of the Anglo-Australian Telescope, we have obtained medium-resolution near-infrared spectra of 10,500 stars in two-degree fields centered on the galactic globular clusters 47 Tuc, NGC 288, M12, M30 and M55. Radial velocit ies and equivalent widths of the infrared Ca II triplet lines have been determined to constrain cluster membership, which in turn has been used to study the angular extent of the clusters. From the analysis of 140-1000 member stars in each cluster, we do not find extended structures that go beyond the tidal radii. For three cluster we estimate a 1% upper limit of extra-tidal red giant branch stars. We detect systemic rotation in 47 Tuc and M55.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا