ﻻ يوجد ملخص باللغة العربية
Using CCD detectors onboard the forthcoming X-ray observatories Chandra and XMM, it is possible to devise a measurement of the absolute density of heavy elements in the hypothetical warm gas filling intercluster space. This gas may be the largest reservoir of baryonic matter in the Universe, but even its existence has not been proven observationally at low redshifts. The proposed measurement would make use of a unique filament of galaxy clusters spanning over 700 Mpc (0.1<z<0.2) along the line of sight in a small area of the sky in Aquarius. The surface density of Abell clusters there is more than 6 times the sky average. It is likely that the intercluster matter column density is enhanced by a similar factor, making its detection feasible under certain optimistic assumptions about its density and elemental abundances. One can compare photoabsorption depth, mostly in the partially ionized oxygen edges, in the spectra of clusters at different distances along the filament, looking for a systematic increase of depth with the distance. The absorption can be measured by the same detector and through the same Galactic column, hence the differential test. A CCD moderate energy resolution (about 100 eV) is adequate for detecting an absorption edge at a known redshift.
Understanding the cosmic re-ionization is one of the key goals of the modern observational cosmology. High redshift QSO spectra can be used as background light sources to measure absorption by intervening neutral hydrogen. We investigate neutral hydr
In order to carry out a systematic and thorough measurement of the HI Gunn-Peterson effect at high redshift, a quantitatively testable and repeatable procedure, in particular, a robust statistical weighting technique, is developed. It is applied to a
The ultraviolet spectrum (1145--1720A) of the distant quasar Q 0302--003 (z=3.286) was observed at 1.8A resolution with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. A total integration time of 23,280 s was obtained. The
We present an HST STIS spectrum of the HeII Gunn-Peterson effect towards HE2347-4342. Compared to the previous HST GHRS data obtained by Reimers et al. (1997), the STIS spectrum has a much improved resolution. The 2-D detector also allows us to bette
Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large ($gtrsim 50$~pc) and massive ($gtrsim 10^5$~$M_odot$) filaments, know as giant molecular filaments (GMFs), may be linked to galactic dynamics and trace