ﻻ يوجد ملخص باللغة العربية
The Milagrito water Cherenkov telescope operated for over a year. The most probable gamma-ray energy was ~1 TeV and the trigger rate was as high as 400 Hz. We have developed an efficient technique for searching the entire sky for short duration bursts of TeV photons. Such bursts may result from traditional gamma-ray bursts that were not in the field-of-view of any other instruments, the evaporation of primordial black holes, or some as yet undiscovered phenomenon. We have begun to search the Milagrito data set for bursts of duration 10 seconds. Here we will present the technique and the expected results. Final results will be presented at the conference.
Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic
Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively
The BL Lac object H1426+428 ($zequiv 0.129$) is an established source of TeV $gamma$-rays and detections of these photons from this object also have important implications for estimating the Extragalactic Background Light (EBL) in addition to the und
Gamma-ray bursts of short duration may harbor vital clues to the range of phenomena producing bursts. However, recent progress from the observation of optical counterparts has not benefitted the study of short bursts. We have searched for early optic
We propose a model for short duration gamma-ray bursts (sGRBs) based on the formation of a quark star after the merger of two neutron stars. We assume that the sGRB central engine is a proto-magnetar, which has been previously invoked to explain the