ﻻ يوجد ملخص باللغة العربية
We present a model for the compression and heating of the ICM by powerful radio galaxies and quasars. Based on a self-similar model of the dynamical evolution of FRII-type objects we numerically integrate the hydrodynamic equations governing the flow of the shocked ICM in between the bow shock and the radio lobes of these sources. The resulting gas properties are presented and discussed. The X-ray emission of the shocked gas is calculated and is found to be in agreement with observations. The enhancement of the X-ray emission of cluster gas due to the presence of powerful radio galaxies may play an important role in the direct detection of cluster gas at high redshifts.
One of the most promising solutions for the cooling flow problem involves energy injection from the central AGN. However it is still not clear how collimated jets can heat the ICM at large scale, and very little is known concerning the effect of radi
We have measured the mid-infrared radiation from an orientation-unbiased sample of powerful 3C RR galaxies and quasars using the IRS and MIPS instruments aboard the Spitzer Space Telescope. We fit the Spitzer data as well as other measurements from t
A new sample of very powerful radio sources, defined from the Molonglo Reference Catalogue, was recently compiled by Best, Rottgering and Lehnert (1999). These authors provided redshifts for 174 of the 178 objects in the sample, making the sample 98%
Feedback by active galactic nuclei (AGN) is frequently invoked to explain the cut-off of the galaxy luminosity function at the bright end and the absence of cooling flows in galaxy clusters. Meanwhile, there are recent observations of shock fronts ar
We present deep near-infrared images, taken with Subaru Telescope, of the region around the z=1.08 radio source 3C 356 which show it to be associated with a poor cluster of galaxies. We discuss evidence that this cluster comprises two subclusters tra