ﻻ يوجد ملخص باللغة العربية
Weakly Interacting Massive Particles (WIMPs) are an attractive candidate for the dark matter thought to make up the bulk of the mass of our universe. We explore here the possibility of using a low pressure negative ion drift chamber to search for WIMPs. The innovation of drifting ions, instead of electrons, allows the design of a detector with exceptional sensitivity to, background rejection from, and signature of WIMPs.
Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detai
Negative-ion time projection chambers(TPCs) have been studied for low-rate and high-resolution applications such as dark matter search experiments. Recently, a full volume fiducialization in a self-triggering TPC was realized. This innovative technol
We present measurements of drift velocities and mobilities of some innovative negative ion gas mixtures at nearly atmospheric pressure based on SF$_{6}$ as electronegative capture agent and of pure SF$_{6}$ at various pressures, performed with the NI
There is considerable experimental effort dedicated to the directional detection of particle dark matter. Gaseous mu-TPC detectors present the privileged features of being able to reconstruct the track and the energy of the recoil nucleus following t
A liquid-methane ionization chamber is proposed as a setup to search for spin-dependent interactions of dark-matter particles with hydrogen