ﻻ يوجد ملخص باللغة العربية
While it is generally thought that molecular outflows from young stellar objects (YSOs) are accelerated by underlying stellar winds or highly collimated jets, the actual mechanism of acceleration remains uncertain. The most favoured model, at least for low and intermediate mass stars, is that the molecules are accelerated at jet-driven bow shocks. Here we investigate, through high resolution numerical simulations, the efficiency of this mechanism in accelerating ambient molecular gas without causing dissociation. The efficiency of the mechanism is found to be surprisingly low suggesting that more momentum may be present in the underlying jet than previously thought. We also compare the momentum transferring efficiencies of pulsed versus steady jets. We find that pulsed jets, and the corresponding steady jet with the same average velocity, transfer virtually the same momentum to the ambient gas. The additional momentum ejected sideways from the jet beam in the case of the pulsed jet only serves to accelerate post-shock jet gas which forms a, largely atomic, sheath around the jet beam. For both the steady and pulsing jets, we find a power law relationship between mass and velocity ($m(v) propto v^{-gamma}$) which is similar to what is observed. We also find that increasing the molecular fraction in the jet decreases $gamma$ as one might expect. We reproduce the so-called Hubble law for molecular outflows and show that it is almost certainly a local effect in the presence of a bow shock.
We review some aspects of the bipolar molecular outflow phenomenon. In particular, we compare the morphological properties, energetics and velocity structures of outflows from high and low-mass protostars and investigate to what extent a common sourc
UltraFast Outflows (UFOs), seen as X-ray blueshifted absorption lines in active galactic nuclei (AGNs), are considered to be a key mechanism for AGN feedback. In this scenario, UFO kinetic energy is transferred into the cold and extended molecular ou
In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important
We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{mu}m -line imaging of the sim 30-long filamentar
In this book chapter, we will briefly review the current empirical understanding of the relation between accretion state and and outflows in accreting stellar mass black holes. The focus will be on the empirical connections between X-ray states and r