ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematical signatures of hidden stellar discs

84   0   0.0 ( 0 )
 نشر من قبل John Magorrian
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف John Magorrian




اسأل ChatGPT حول البحث

The deprojection of the surface brightness distribution of an axisymmetric galaxy does not have a unique solution unless the galaxy is viewed precisely edge-on. I present an algorithm that finds the full range of smooth axisymmetric density distributions consistent with a given surface brightness distribution and inclination angle, and use it to investigate the effects of this non-uniqueness on the line-of-sight velocity profiles (VPs) of two-integral models of both real and toy disky galaxies viewed at a range of inclination angles. Photometrically invisible face-on disks leave very clear signatures in the minor-axis VPs of the models (Gauss--Hermite coefficients h_4>0.1), provided the disk-to-bulge ratio is greater than about 3%. I discuss the implications of these hitherto neglected disks for dynamical modelling.

قيم البحث

اقرأ أيضاً

223 - M. Sarzi , H. R. Ledo , M. Dotti 2015
Nuclear stellar discs (NSDs) can help to constrain the assembly history of their host galaxies, as long as we can assume them to be fragile structures that are disrupted during merger events. In this work we investigate the fragility of NSDs by means of N-body simulations reproducing the last phases of a galaxy encounter, when the nuclear regions of the two galaxies merge. For this, we exposed a NSD set in the gravitational potential of the bulge and supermassive black hole of a primary galaxy to the impact of the supermassive black hole from a secondary galaxy. We explored merger events of different mass ratios, from major mergers with a 1:1 mass ratio to intermediate and minor interactions with 1:5 and 1:10 ratios, while considering various impact geometries. We analyse the end results of such mergers from different viewing angles and looked for possible photometric and kinematic signatures of the presence of a disc in the remnant surface density and velocity maps, while adopting detection limits from real observations. Our simulations show that indeed NSDs are fragile against major mergers, which leave little trace of NSDs both in images and velocity maps, while signatures of a disc can be found in the majority of the intermediate to minor-merger remnants and in particular when looking at their kinematics. These results show that NSDs could allow to distinguish between these two modes of galaxy assembly, which may indeed pertain to different kinds of galaxies or galactic environments.
3D spectroscopy produces hundreds of spectra from which maps of the characteristics of stellar populations (age-metallicity) and internal kinematics of galaxies can be derived. We carried on simulations to assess the reliability of inversion methods and to define the requirements for future observations. We quantify the biases and show that to minimize the errors on the kinematics, age and metallicity (in a given observing time) the size of the spatial elements and the spectral dispersion should be chosen to obtain an instrumental velocity dispersion comparable to the physical dispersion.
389 - A. Obreja 2016
Detailed studies of galaxy formation require clear definitions of the structural components of galaxies. Precisely defined components also enable better comparisons between observations and simulations. We use a subsample of eighteen cosmological zoo m-in simulations from the NIHAO project to derive a robust method for defining stellar kinematic discs in galaxies. Our method uses Gaussian Mixture Models in a 3D space of dynamical variables. The NIHAO galaxies have the right stellar mass for their halo mass, and their angular momenta and Sersic indices match observations. While the photometric disc-to-total ratios are close to 1 for all the simulated galaxies, the kinematic ratios are around ~0.5. Thus, exponential structure does not imply a cold kinematic disc. Above log(M*)~9.5, the decomposition leads to thin discs and spheroids that have clearly different properties, in terms of angular momentum, rotational support, ellipticity, [Fe/H] and [O/Fe]. At log(M*)<9.5, the decomposition selects discs and spheroids with less distinct properties. At these low masses, both the discs and spheroids have exponential profiles with high minor-to-major axes ratios, i.e. thickened discs.
In recent years an increasing number of observational studies have hinted at the presence of warps in protoplanetary discs, however a general comprehensive description of observational diagnostics of warped discs was missing. We performed a series of 3D SPH hydrodynamic simulations and combined them with 3D radiative transfer calculations to study the observability of warps in circumbinary discs, whose plane is misaligned with respect to the orbital plane of the central binary. Our numerical hydrodynamic simulations confirm previous analytical results on the dependence of the warp structure on the viscosity and the initial misalignment between the binary and the disc. To study the observational signatures of warps we calculate images in the continuum at near-infrared and sub-millimetre wavelengths and in the pure rotational transition of CO in the sub-millimetre. Warped circumbinary discs show surface brightness asymmetry in near-infrared scattered light images as well as in optically thick gas lines at sub-millimetre wavelengths. The asymmetry is caused by self-shadowing of the disc by the inner warped regions, thus the strength of the asymmetry depends on the strength of the warp. The projected velocity field, derived from line observations, shows characteristic deviations, twists and a change in the slope of the rotation curve, from that of an unperturbed disc. In extreme cases even the direction of rotation appears to change in the disc inwards of a characteristic radius. The strength of the kinematical signatures of warps decreases with increasing inclination. The strength of all warp signatures decreases with decreasing viscosity.
Tidal encounters in star clusters perturb discs around young protostars. In Cuello et al. (2019a, Paper I) we detailed the dynamical signatures of a stellar flyby in both gas and dust. Flybys produce warped discs, spirals with evolving pitch angles, increasing accretion rates, and disc truncation. Here we present the corresponding observational signatures of these features in optical/near-infrared scattered light and (sub-) millimeter continuum and CO line emission. Using representative prograde and retrograde encounters for direct comparison, we post-process hydrodynamical simulations with radiative transfer methods to generate a catalogue of multi-wavelength observations. This provides a reference to identify flybys in recent near-infrared and sub-millimetre observations (e.g., RW Aur, AS 205, HV Tau & DO Tau, FU Ori, V2775 Ori, and Z CMa).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا