ترغب بنشر مسار تعليمي؟ اضغط هنا

Host galaxies and environment of BL Lac objects

95   0   0.0 ( 0 )
 نشر من قبل Jochen Heidt
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Heidt




اسأل ChatGPT حول البحث

Since the last meeting on BL Lac objects 10 years ago, BL Lac host galaxies and their cluster environment have gained much attention. Hence, our current knowledge of the properties of BL Lac host galaxies and their cluster environment has improved considerably, which will be reviewed. The importance of future observing programs using (very) large telescopes is briefly outlined.

قيم البحث

اقرأ أيضاً

(abridged) We present near-infrared Ks-band imaging of 13 high redshift (0.6 < z < 1.3) BL Lac objects. We clearly detect the host in eight objects, and marginally in three others. In all cases, the host galaxy is well represented by an r^1/4 surface brightness law. The host galaxies of high redshift BL Lacs are large (<R(e)> ~7 kpc) and very luminous (<M(K)> = -27.9+-0.7), ~3 mag brighter than L*, and ~1 mag brighter than brightest cluster galaxies. They are also ~1 mag brighter than low redshift radio galaxies and appear to deviate from their K-z relationship. On the other hand, the high luminosities agree with the few optical studies of high redshift BL Lac hosts. The nuclear luminosity and the nucleus-galaxy luminosity ratio of the high redshift BL Lacs are much larger than those in low redshift BL Lacs. This may be due to either a higher intrinsic nuclear luminosity, or enhanced luminosity because of strong beaming. Contrary to what is observed in low redshift BL Lacs, the luminosities of the host galaxy and of the nucleus are fairly well correlated, as expected from the black hole mass - bulge luminosity relationship. High redshift BL Lacs radiate with a wide range of power with respect to their Eddington luminosity, and this power is intermediate between those in nearby BL Lacs and in luminous radio-loud quasars. The high redshift BL Lac host galaxies appear to be ~2 mag brighter than those at low redshift. This is likely due to a strong selection effect in the surveys of BL Lacs that makes observable only the most luminous sources at z > 0.5 and produces a correlation between the nuclear and the host luminosity. However, this may also suggest strong luminosity evolution which is inconsistent with a simple passive evolution of the host galaxies, and requires a contribution from relatively recent star formation episodes.
118 - J.K. Kotilainen 2004
Near-infrared and optical imaging of BL Lac host galaxies is used to investigate their colour properties. We find that the R-H colour and colour gradient distributions of the BL Lac hosts are much wider than those for normal ellipticals, and many obj ects have very blue hosts and/or steep colour gradients. The blue colours are most likely caused by recent star formation. The lack of obvious signs of interaction may, however, require a significant time delay between the interaction event with associated star formation episodes and the onset of the nuclear activity.
The most elusive and extreme sub-class of active galactic nuclei (AGNs), known as BL Lac objects, shows features that can only be explained as the result of relativistic effects occurring in jets pointing at a small angle with respect to the line of sight. A long standing issue is the identification of the BL Lac parent population, having jets oriented at larger angles. According to the unification scenario of AGNs, radio galaxies with low luminosity and edge-darkened radio morphology are the most promising candidates to be the parent population of BL Lacs. Here we compare the large-scale environment, an orientation independent property, of well-defined samples of BL Lacs with samples of radio-galaxies all lying in the local Universe. Our study reveals that BL Lacs and radio galaxies live in significantly different environments, challenging predictions of the unification scenario. We propose a solution to this problem proving that large-scale environments of BL Lacs is statistically consistent with that of compact radio-sources, known as FR0s, sharing similar properties. This implies that highly relativistic jets are ubiquitous and are the natural outcome of the accretion of gas into the deep gravitational potential well produced by supermassive black holes.
We performed an observational program with the X-ray satellite BeppoSAX to study objects with extreme synchrotron peak frequencies (nu_peak > 1 keV). Of the seven sources observed, four showed peak frequencies in the range 1-5 keV, while one (1ES 142 6+428) displayed a flat power law spectrum (alpha= 0.92), locating its synchrotron peak at or above 100 keV. This is the third source of this type ever found, after Mkn 501 and 1ES 2344+514. Our data confirm the large nu_peak variability of this class of sources, compared with lower peaked objects. The high synchrotron peak energies, flagging the presence of high energy electrons, make the extreme BL Lacs also good candidates for TeV emission, and therefore good probes for the IR background.
Only BL Lac objects have been detected as extragalactic sources of very high energy (E > 300 GeV) gamma rays. Using the Whipple Observatory Gamma-ray Telescope, we have attempted to detect more BL Lacs using three approaches. First, we have conducted surveys of nearby BL Lacs, which led to the detections of Mrk 501 and 1ES 2344+514. Second, we have observed X-ray bright BL Lacs when the RXTE All-Sky Monitor identifies high state X-ray emission in an object, in order to efficiently detect extended high emission states. Third, we have conducted rapid observations of several BL Lacs and QSOs located close together in the sky to search for very high flux, short time-scale flare states such as have been seen from Mrk 421. We will present the results of a survey using the third observational technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا