ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Morphology from NICMOS Parallel Imaging

196   0   0.0 ( 0 )
 نشر من قبل Harry Teplitz
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution NICMOS images of random fields obtained in parallel to other HST observations. We present galaxy number counts reaching H=24. The H-band galaxy counts show good agreement with the deepest I- and K-band counts obtained from ground-based data. We present the distribution of galaxies with morphological type to H<23. We find relatively fewer irregular galaxies compared to an I-band sample from the Hubble Deep Field, which we attribute to their blue color, rather than to morphological K-corrections. We conclude that the irregulars are intrinsically faint blue galaxies at z<1.

قيم البحث

اقرأ أيضاً

86 - Lin Yan 2000
We present a catalog of extremely red objects discovered using the NICMOS/HST parallel imaging database and ground-based optical follow-up observations. Within an area of 16 square arc-minutes, we detect 15 objects with $rm R - F160W > 5$ and $rm F16 0W < 21.5$. We have also obtained K-band photometry for a subset of the 15 EROs. All of the $rm R - F160W$ selected EROs imaged at K-band have $rm R - K > 6$. Our objects have $rm F110W - F160W$ colors in the range of 1.3 - 2.1, redder than the cluster ellipticals at $z sim 0.8$ and nearly 1 magnitude redder than the average population selected from the F160W images at the same depth. In addition, among only 22 NICMOS pointings, we detected two groups or clusters in two fields, each contains 3 or more EROs, suggesting that extremely red galaxies may be strongly clustered. At bright magnitudes with $rm F160W < 19.5$, the ERO surface density is similar to what has been measured by other surveys. At the limit of our sample, F160W = 21.5, our measured surface density is 0.94$pm 0.24$ arcmin^{-2}. Excluding the two possible groups/clusters and the one apparently stellar object, reduces the surface density to 0.38$pm 0.15$ arcmin^{-2}.
We present the results from adaptive optics (AO) assisted imaging in the Ks band of an area of 15 arcmin^2 for SWAN (Survey of a Wide Area with NACO). We derive the high resolution near-IR morphology of ~400 galaxies up to Ks~23.5 in the first 21 SWA N fields around bright guide stars, carefully taking into account the survey selection effects and using an accurate treatment of the anisoplanatic AO PSF. The detected galaxies are sorted into two morphological classes according to their Sersic index. The extracted morphological properties and number counts of the galaxies are compared with the predictions of different galaxy formation and evolution models, both for the whole galaxy population and separately for late-type and early-type galaxies. This is one of the first times such a comparison has been done in the near-IR, as AO observations and accurate PSF modeling are needed to obtain reliable morphological classification of faint field galaxies at these wavelengths. For early-type galaxies we find that a pure luminosity evolution model, without evidence for relevant number and size evolution, better reproduces the observed properties of our Ks-selected sample than current semi-analytic models based on the hierarchical picture of galaxy formation. In particular, we find that the observed flattening of elliptical galaxy counts at Ks~20 is quantitatively in good agreement with the prediction of the pure luminosity evolution model that was calculated prior to the observation. For late-type galaxies, while both models are able to reproduce the number counts, we find some hints of a possible size growth. These results demonstrate the unique power of AO observations to derive high resolution details of faint galaxies morphology in the near-IR and drive studies of galaxy evolution.
We present results from our analysis of F160W NICMOS Parallel images. These data cover $sim$~9~sq. arcminutes and reach 3$sigma$ depths of H$=$ 24.3 $-$ 25.5 in a $0.6$ diameter aperture with integration times of 2,000 to 13,000 seconds. We derive th e first deep H band galaxy counts. The slope of the counts for H$<$ 20 is 0.31, consistent with various K-band measurements from the Keck telescopes. The measured number counts vs. magnitude relation is reasonably well fitted with no-evolution models with a low $Omega$ value. The half-light radii of the galaxies declines steeply with apparent magnitude and reaches the NIC3 resoltion limit at H$=$23.5. Deep ground-based VRI imaging of one NICMOS field has revealed an extremely red galaxy with R$-$H $=$ 6 and H of 18.8. Our analyses of the grism data show that we can reach 3$sigma$ flux limits of of $1times 10^{-16}$ to $2times10^{-17}$ ergs/sec/cm$^2$ for integration times of 2,000 to 21,000~seconds. We have detected a total of 33 emission line galaxies. The comoving number density is $rm sim 2times 10^{-4} Mpc^{-3}$. The detected emission lines are probably H$_alpha$~6563AA. Thus, the derived star formation rates, without extinction correction, are $10 - 163 Modot$ per year for galaxies at redshifts between 0.7 and 1.9.
75 - Alaina L. Henry 2007
We have selected 14 J-dropout Lyman Break Galaxy (LBG) candidates with J110 - H160 > 2.5 from the NICMOS Parallel Imaging Survey. This survey consists of 135 square arcminutes of imaging in 228 independent sight lines, reaching average 5 sigma sensit ivities of J110 = 25.8 and H160 = 25.6 (AB). Distinguishing these candidates from dust reddened star forming galaxies at z ~ 2-3 is difficult, and will require longer wavelength observations. We consider the likelihood that any J-dropout LBGs exist in this survey, and find that if L*(z=9.5) is significantly brighter than L*(z=6) (a factor of four), then a few J-dropout LBGs are likely. A similar increase in luminosity has been suggested by Eyles et al. and Yan et al., but the magnitude of this increase is uncertain.
134 - D. Batcheldor 2008
The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarim etric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا