ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Reactions Rates Governing the Nucleosynthesis of Ti44

47   0   0.0 ( 0 )
 نشر من قبل Lih-Sin The
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large excesses of Ca44 in certain presolar graphite and silicon carbide grains give strong evidence for Ti44 production in supernovae. Furthermore, recent detection of the Ti44 gamma-line from the Cas A SNR by CGRO/COMPTEL shows that radioactive Ti44 is produced in supernovae. These make the Ti44 abundance an observable diagnostic of supernovae. Through use of a nuclear reaction network, we have systematically varied reaction rates and groups of reaction rates to experimentally identify those that govern Ti44 abundance in core-collapse supernova nucleosynthesis. We survey the nuclear-rate dependence by repeated calculations of the identical adiabatic expansion, with peak temperature and density chosen to be 5.5xE9 K and 1E7 g/cc, respectively, to approximate the conditions in detailed supernova models. We find that, for equal total numbers of neutrons and protons (eta=0), Ti44 production is most sensitive to the following reaction rates: Ti44(alpha,p)V47, alpha(2alpha,gamma)C12, Ti44(alpha,gamma)Cr48, V45(p,gamma)Cr46. We tabulate the most sensitive reactions in order of their importance to the Ti44 production near the standard values of currently accepted cross-sections, at both reduced reaction rate (0.01X) and at increased reaction rate (100X) relative to their standard values. Although most reactions retain their importance for eta > 0, that of V45(p,gamma)Cr46 drops rapidly for eta >= 0.0004. Other reactions assume greater significance at greater neutron excess: C12(alpha,gamma)O16, Ca40(alpha,gamma)Ti44, Al27(alpha,n)P30, Si30(alpha,n)S33. Because many of these rates are unknown experimentally, our results suggest the most important targets for future cross section measurements governing the value of this observable abundance.



قيم البحث

اقرأ أيضاً

The astrophysical p process, which is responsible for the origin of the proton rich stable nuclei heavier than iron, was investigated using a full nuclear reaction network for a type II supernova explosion when the shock front passes through the O/Ne layer. Calculations were performed with a multi-layer model adopting the seed of a pre-explosion evolution of a 25 solar mass star. The reaction flux was calculated to determine the main reaction path and branching points responsible for synthesizing the proton rich nuclei. In order to investigate the impact of nuclear reaction rates on the predicted p-process abundances, extensive simulations with different sets of collectively and individually modified neutron-, proton-, alpha-capture and photodisintegration rates have been performed. These results are not only relevant to explore the nuclear physics related uncertainties in p-process calculations but are also important for identifying the strategy and planning of future experiments.
Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.
We compute radiative corrections to nuclear reaction rates that determine the outcome of the Big-Bang Nucleosynthesis (BBN). Any nuclear reaction producing a photon with an energy above $2m_e$ must be supplemented by the corresponding reaction where the final state photon is replaced by an electron-positron pair. We find that pair production brings a typical $0.2 %$ enhancement to photon emission rates, resulting in a similar size corrections to elemental abundances. The exception is $^4{rm He}$ abundance, which is insensitive to the small changes in the nuclear reaction rates. We also investigate the effect of vacuum polarisation on the Coulomb barrier, which brings a small extra correction when reaction rates are extrapolated from the measured energies to the BBN Gamow peak energies.
Stochastic fluctuations of the neutron population within a nuclear reactor are typically prevented by operating the core at a sufficient power, since a deterministic behavior of the neutron population is required by automatic safety systems to detect unwanted power excursions. Recent works however pointed out that, under specific circumstances, non-Poissonian patterns could affect neutron spatial distributions. This motivated an international program to experimentally detect and characterize such fluctuations and correlations, which took place in 2017 at the Rensselaer Polytechnic Institute Reactor Critical Facility. The main findings of this program will indeed unveil patchiness in snapshots of neutron spatial distributions -- obtained with a dedicated numerical twin of the reactor -- that support this first experimental characterization of the neutron clustering phenomenon, while a stochastic model based on reaction-diffusion processes and branching random walks will reveal the key role played by the reactor intrinsic sources in understanding neutron spatial correlations.
New results for the strength of the symmetry energy are presented which illustrate the complementary aspects encountered in reactions probing nuclear densities below and above saturation. A systematic study of isotopic effects in spectator fragmentat ion was performed at the ALADIN spectrometer with 124Sn primary and 107Sn and 124La secondary beams of 600 MeV/nucleon incident energy. The analysis within the Statistical Fragmentation Model shows that the symmetry-term coefficient entering the liquid-drop description of the emerging fragments decreases significantly as the multiplicity of fragments and light particles from the disintegration of the produced spectator systems increases. Higher densities were probed in the FOPI/LAND study of nucleon and light-particle flows in central and mid-peripheral collisions of 197Au+197Au nuclei at 400 MeV/nucleon incident energy. From the comparison of the measured neutron and hydrogen squeeze-out ratios with predictions of the UrQMD model a moderately soft symmetry term with a density dependence of the potential term proportional to (rho/rho_0)^{gamma} with gamma = 0.9 +- 0.3 is favored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا