ﻻ يوجد ملخص باللغة العربية
We report on Australia Telescope Compact Array observations of the ~10^5 yr old pulsar PSR B0906-49. In an image containing only off-pulse emission, we find a weak, slightly extended source coincident with the pulsars position, which we argue is best interpreted as a pulsar wind nebula (PWN). A trail of emission extending behind the pulsar aligns with the major axis of the PWN, and implies that the pulsar is moving north-west with projected velocity ~60 km/s, consistent with its scintillation speed. The consequent density we infer for the pulsars environment is >2 cm^(-3), so that the PWN around PSR B0906-49 is confined mainly by the high density of its surroundings rather than by the pulsars velocity. Other properties of the system such as the PWNs low luminosity and apparent steep spectrum, and the pulsars large characteristic age, lead us to suggest that this nebula is substantially different from other radio PWNe, and may represent a transition between young pulsars with prominent radio PWNe and older pulsars for which no radio PWN has been detected. We recommend that further searches for radio PWNe should be made as here: at low frequencies and with the pulsed emission subtracted.
HESS J1825-137 was detected with a significance of 8.1 $sigma$ in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. Both HESS J1825-137 and the X-ray pulsar wind nebula G18.0--0.7 (associated with the Vela-like pulsar PSR B182
PSR J1833-1034 and its associated Pulsar Wind Nebula (PWN) has been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low energy X-ray data from Chandra reveal a complex morphology that is characterised by a bright cen
PSR J1809-1917 is a young ($tau=51$ kyr) energetic ($dot{E}=1.8times10^{36}$ erg s$^{-1}$) radio pulsar powering a pulsar wind nebula (PWN). We report on the results of three Chandra X-ray Observatory observations which show that the PWN consists of
We present XMM-Newton and Chandra X-ray observations of the middle-aged radio pulsar PSR B0355+54. Our X-ray observations reveal emission not only from the pulsar itself, but also from a compact diffuse component extending ~50 in the opposite directi
In this work, we study the X-ray bow-shock nebula powered by the mature pulsar PSR B1929+10 using data from XMM-Newton, with an effective exposure of $sim$ 300 ks, offering the deepest investigation of this system thus far. We found the X-ray axial o