ﻻ يوجد ملخص باللغة العربية
Broad-band (gamma to radio) variations of the flux density were observed in the first half of 1992 in the luminous high redshift (z = 2.172) quasar S5 0836+710. VLBI monitoring observations during 1993 -- 1996 performed at 86 GHz, 22 GHz, 15 GHz, and 8 GHz show the ejection of a new jet component, which most probably is directly related to a quasi simultaneous gamma-, X-ray, optical flaring activity which was observed in February 1992. During the period 1992 -- 1993 the flaring propagated through the radio spectrum. From several quasi-simultaneous radio spectra taken during this phase of activity, we determine the time evolution of the spectral turnover of the radio spectrum in the S_m- u_m diagram. The data indicate a correlation of the jet activity with the variability of the broad-band electromagnetic spectrum of the source. The observational findings are discussed in the framework of relativistic shock models.
Detailed studies of relativistic jets in active galactic nuclei (AGN) require high-fidelity imaging at the highest possible resolution. This can be achieved using very long baseline interferometry (VLBI) at radio frequencies, combining worldwide (glo
We report on results of a multi-band monitoring campaign from radio to gamma rays of the high-redshift flat spectrum radio quasar S5 0836+710 during a high activity period detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telesc
The luminous high-redshift (z=2.17) quasar S5 0836+710 has been observed at 5GHz with the VSOP. We compare the properties of three images obtained from the observation: a low-resolution ground array image (dynamic range 4600:1), a full-resolution VSO
A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those s
Our goal is to study the termination of an AGN jet in the young universe and to deduce physical parameters of the jet and the intergalactic medium. We use LOFAR to image the long-wavelength radio emission of the high-redshift blazar S5 0836+710 on ar