ﻻ يوجد ملخص باللغة العربية
LOTIS (Livermore Optical Transient Imaging System) is a gamma-ray burst optical counterpart search experiment located near Lawrence Livermore National Laboratory in California. The system is linked to the GCN (GRB Coordinates Network) real-time coordinate distribution network and can respond to a burst trigger in 6-15 seconds. LOTIS has a total field-of-view of 17.4 deg x 17.4 deg with a completeness sensitivity of m_V ~ 11 for a 10 second integration time. Since operations began in October 1996, LOTIS has responded to over 30 GCN/BATSE GRB triggers. Seven of these triggers are considered good events subject to the criteria of clear weather conditions, < 60 s response time, and > 50% coverage of the final BATSE 3sigma error circle. We discuss results from the first year of LOTIS operations with an emphasis on the observations and analysis of GRB 971006 (BATSE trigger 6414).
The Fermi Gamma-ray Space Telescope (Fermi) was launched on June 11, 2008 and began its first year sky survey on August 11, 2008. The Large Area Telescope (LAT), a wide field-of-view pair-conversion telescope covering the energy range from 20 MeV to
Swift has allowed the possibility to give Supergiant Fast X-ray Transients (SFXTs), the new class of High Mass X-ray Binaries discovered by INTEGRAL, non serendipitous attention throughout all phases of their life. We present our results based on the
The location of an astronomical observatory is a key factor that affects its scientific productivity. The best astronomical sites are generally those found at high altitudes. Several such sites in western China and the Tibetan plateau are presently u
We present multi-instrument optical observations of the High Energy Transient Explorer (HETE-2)/Interplanetary Network (IPN) error box of GRB 010921. This event was the first gamma ray burst (GRB) localized by HETE-2 which has resulted in the detecti
We present full sky microwave maps in five bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are <0.5% and the low systematic error level is well specified. The 2<l<900 anisotropy power spectrum is cosmic variance limited f