ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Populations in Three Outer Fields of the LMC

75   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present HST photometry for three fields in the outer disk of the LMC extending approximately four magnitudes below the faintest main sequence turnoff. We cannot detect any strongly significant differences in the stellar populations of the three fields based on the morphologies of the color-magnitude diagrams, the luminosity functions, and the relative numbers of stars in different evolutionary stages. Our observations therefore suggest similar star formation histories in these regions, although some variations are certainly allowed. The fields are located in two regions of the LMC: one is in the north-east field and two are located in the north-west. Under the assumption of a common star formation history, we combine the three fields with ground-based data at the same location as one of the fields to improve statistics for the brightest stars. We compare this stellar population with those predicted from several simple star formation histories suggested in the literature, using a combination of the R-method of Bertelli et al (1992) and comparisons with the observed luminosity function. The only model which we consider that is not rejected by the observations is one in which the star formation rate is roughly constant for most of the LMCs history and then increases by a factor of three about 2 Gyr ago. Such a model has roughly equal numbers of stars older and younger than 4 Gyr, and thus is not dominated by young stars. This star formation history, combined with a closed box chemical evolution model, is consistent with observations that the metallicity of the LMC has doubled in the past 2 Gyr.



قيم البحث

اقرأ أيضاً

The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a lar ge portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stel lar population. We derive geometrical and structural parameters for various stellar populations in the LMC disk. For the distribution of all LMC stars, we find an inclination of $i=-38.14^{circ}pm0.08^{circ}$ (near side in the North) and a position angle for the line of nodes of $theta_0=129.51^{circ}pm0.17^{circ}$. We find that stars younger than $sim 4$ Gyr are more centrally concentrated than older stars. Fitting a projected exponential disk shows that the scale radius of the old populations is $R_{>4 Gyr}=1.41pm0.01$ kpc, while the younger population has $R_{<4 Gyr}=0.72pm0.01$ kpc. Howe ver, the spatial distribution of the younger population deviates significantly from the projected exponential disk model. The distribution of old stars suggests a large truncation radius of $R_{t}=13.5pm0.8$ kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is $simeq 24^{+9}_{-6}$ times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LM C disk model, we find that the LMC disk is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disk in the LMC outskirts, or as evidence of a spheroidal halo component
We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49s stellar halo out to ~ 100 kpc (7 Re) , where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B-V ~ 0.7); if this is purely a metallicity effect, it argues for extremely metal poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxys surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49s outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49s halo. Thus the extremely metal-poor nature of M49s extended halo provides some tension against current models for elliptical galaxy formation.
72 - Gerard Gilmore 2007
The Galaxys stellar populations are naturally classified into six `types, of which five have been observed. These are the thin disk (Pop I in the historical scheme), a discrete thick disk (Pop I.5), the metal-rich bulge, which was not named in the Ba ade sequence, the rare field halo (Pop II), a population currently being accreted into the very outer halo filed (Pop Sgr?)and a hard to discover initial enriching Pop III. Each of these forms a group with astonishly tight correlations between chemical element ratios and other parameters. It is very hard to understand how the observed properties of any one of these populations can be the sum of many discrete histories, except for the minor continuing outer halo accretion. All these stellar populations are embedded in dark-matter, and allow the properties of dark matter to be measured on small scales. Intriguing and unexpected consistencies in the properties of this dark matter are being revealed.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Ga laxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا