ترغب بنشر مسار تعليمي؟ اضغط هنا

Very High Energy Gamma Rays from the Vela Pulsar/Nebula

325   0   0.0 ( 0 )
 نشر من قبل Masaki Mori
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed the Vela pulsar region at TeV energies using the 3.8 m imaging Cherenkov telescope near Woomera, South Australia every year since 1992. This is the first concerted search for pulsed and unpulsed emission from the Vela region, and the imaging technique also allows the location of the emission within the field of view to be examined. A significant excess of gamma-ray-like events is found offset from the Vela pulsar to the southeast by about 0.13deg. The excess shows the behavior expected of gamma-ray images when the asymmetry cut is applied to the data. There is no evidence for the emission being modulated with the pulsar period -- in contrast to earlier claims of signals from the Vela pulsar direction.

قيم البحث

اقرأ أيضاً

We have observed the Vela pulsar region at TeV energies using the 3.8 m imaging Cherenkov telescope near Woomera, South Australia between January 1993 and March 1995. Evidence of an unpulsed gamma-ray signal has been detected at the 5.8 sigma level. The detected gamma-ray flux is (2.9 +/- 0.5 +/- 0.4) x 10^-12 photons cm^-2 sec^-1 above 2.5 +/- 1.0 TeV and the signal is consistent with steady emission over the two years. The gamma-ray emission region is offset from the Vela pulsar position to the southeast by about 0.13 deg. No pulsed emission modulated with the pulsar period has been detected and the 95 % confidence flux upper limit to the pulsed emission from the pulsar is (3.7 +/- 0.7) x 10^-13 photons cm^-2 sec^-1 above 2.5 +/- 1.0 TeV.
Motivated by recent detections of pulsar wind nebulae in very-high-energy (VHE) gamma rays, a systematic search for VHE gamma-ray sources associated with energetic pulsars was performed, using data obtained with the H.E.S.S. (High Energy Stereoscopic System) instrument. The search for VHE gamma-ray sources near the pulsar PSR J1718-3825 revealed the new VHE gamma-ray source HESS J1718-385. We report on the results from the HESS data analysis of this source and on possible associations with the pulsar and at other wavelengths. We investigate the energy spectrum of HESS J1718-385 that shows a clear peak. This is only the second time a VHE gamma-ray spectral maximum from a cosmic source was observed, the first being the Vela X pulsar wind nebula.
In this work we study how the cosmological parameter, the Hubble constant $H_0$, can be constrained by observation of very high energy (VHE) $gamma$-rays at the TeV scale. The VHE $gamma$-rays experience attenuation by background radiation field thro ugh $e^+e^-$ pair production during the propagation in the intergalactic space. This effect is proportional to the distance that the VHE $gamma$-rays go through. Therefore the absorption of TeV $gamma$-rays can be taken as cosmological distance indicator to constrain the cosmological parameters. Two blazars Mrk 501 and 1ES 1101-232, which have relatively good spectra measurements by the atmospheric Cerenkov telescope, are studied to constrain $H_0$. The mechanism constraining the Hubble constant adopted here is very different from the previous methods such as the observations of type Ia supernovae and the cosmic microwave background. However, at $2sigma$ level, our result is consistent with other methods.
High-energy particle transport in pulsar wind nebulae (PWNe) plays an essential role in explaining the characteristics revealed in multiwavelength observations. In this paper, the TeV-gamma-ray-emitting electrons in the Vela X PWN are approximated to be injected impulsively when the cocoon is formed due to the interaction between the SNR reverse shock and the PWN. By solving the diffusion-loss equation analytically, we reproduce the broadband spectral energy distribution and surface brightness profile simultaneously. The diffusion coefficient of TeV electrons and positrons, which is well constrained by the spectral and spatial properties of the TeV nebula, is thus determined to be $1 times 10^{26}$,cm$^{2}$,s$^{-1}$ for 10,TeV electrons and positrons. This coefficient is more than three orders of magnitude lower than that in the interstellar medium, in agreement with a constraint recently obtained from HAWC observations of a TeV nebula associated with the Geminga pulsar. These results suggest that slow diffusion of high-energy particles might be common in PWNe.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energie s, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا