ترغب بنشر مسار تعليمي؟ اضغط هنا

HII Region Abundances in the Polar Ring of NGC 2685

197   0   0.0 ( 0 )
 نشر من قبل Paul Eskridge
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained optical spectrophotometry of 11 HII regions in the polar ring of NGC 2685 (the Helix galaxy), and have used these data to study the physical characteristics of the polar-ring HII regions. The HII regions have normal spectra with no suggestion of unusual density, temperature, extinction, or composition. Semi-empirical calculations yield high oxygen abundance estimates (0.8--1.1 Z-Solar) in all HII regions. This, along with the observed (B-V) color, H-alpha equivalent width, and molecular gas properties argue against the current picture in which polar rings form from tidally captured dwarf irregular galaxies, and suggests instead that the rings are long-lived, self-gravitating structures as predicted by some dynamical models. This would allow the time required for multiple generations of star formation, and for the retention of the resulting enriched ejecta for inclusion in further generations of star formation.



قيم البحث

اقرأ أيضاً

We present the results of stellar photometry of polar-ring galaxies NGC 2685 and NGC 4650A, using the archival data obtained with the Hubble Space Telescopes Wide Field Planetary Camera 2. Polar rings of these galaxies were resolved into ~800 and ~43 0 stellar objects in the B, V and Ic bands, considerable part of which are blue supergiants located in the young stellar complexes. The stellar features in the CM-diagrams are best represented by isochrones with metallicity Z = 0.008. The process of star formation in the polar rings of both galaxies was continuous and the age of the youngest detected stars is about 9 Myr for NGC 2685 and 6.5 Myr for NGC 4650A.
201 - R.A. Swaters , V.C. Rubin 2003
We present the first measurement of the stellar kinematics in the polar ring of NGC 4650A. There is well defined rotation, with the stars and gas rotating in the same direction, and with similar amplitude. The gaseous and stellar kinematics suggest a n approximately flat rotation curve, providing further support for the hypothesis that the polar material resides in a disk rather than in a ring. The kinematics of the emission line gas at and near the center of the S0 suggests that the polar disk lacks a central hole. We have not detected evidence for two, equal mass, counterrotating stellar polar streams, as is predicted in the resonance levitation model proposed by Tremaine & Yu. A merger seems the most likely explanation for the structure and kinematics of NGC 4650A.
We present new Spitzer Space Telescope observations of the region NGC 2467, and use these observations to determine how the environment of an HII region affects the process of star formation. Our observations comprise IRAC (3.6, 4.5, 5.8, and 8.0 um) and MIPS (24 um) maps of the region, covering approximately 400 square arcminutes. The images show a region of ionized gas pushing out into the surrounding molecular cloud, powered by an O6V star and two clusters of massive stars in the region. We have identified as candidate Young Stellar Objects (YSOs) 45 sources in NGC 2467 with infrared excesses in at least two mid-infrared colors. We have constructed color-color diagrams of these sources and have quantified their spatial distribution within the region. We find that the YSOs are not randomly distributed in NGC 2467; rather, over 75% of the sources are distributed at the edge of the HII region, along ionization fronts driven by the nearby massive stars. The high fraction of YSOs in NGC 2467 that are found in proximity to gas that has been compressed by ionization fronts supports the hypothesis that a significant fraction of the star formation in NGC 2467 is triggered by the massive stars and the expansion of the HII region. At the current rate of star formation, we estimate at least 25-50% of the total population of YSOs formed by this process.
Stellar feedback, expanding HII regions, wind-blown bubbles, and supernovae are thought to be important triggering mechanisms of star formation. Stellar associations, being hosts of significant numbers of early-type stars, are the loci where these me chanisms act. In this part of our photometric study of the star-forming region NGC346/N66 in the Small Magellanic Cloud, we present evidence based on previous and recent detailed studies, that it hosts at least two different events of triggered star formation and we reveal the complexity of its recent star formation history. In our earlier studies of this region (Papers I, III) we find that besides the central part of N66, where the bright OB stellar content of the association NGC346 is concentrated, an arc-like nebular feature, north of the association, hosts recent star formation. This feature is characterized by a high concentration of emission-line stars and Young Stellar Objects, as well as embedded sources seen as IR-emission peaks that coincide with young compact clusters of low-mass pre-main sequence stars. All these objects indicate that the northern arc of N66 encompasses the most current star formation event in the region. We present evidence that this star formation is the product of a different mechanism than that in the general area of the association, and that it is triggered by a wind-driven expanding HII region (or bubble) blown by a massive supernova progenitor, and possibly other bright stars, a few Myr ago. We propose a scenario according to which this mechanism triggered star formation away from the bar of N66, while in the bar of N66 star formation is introduced by the photo-ionizing OB stars of the association itself.
We use optical integral field spectroscopy and 8 and 24 micron mid-IR observations of the giant HII region NGC 588 in the disc of M33 as input and constraints for two-dimensional tailor-made photoionisation models. Two different geometrical approache s are followed for the modelling structure: i) Each spatial element of the emitting gas is studied individually using models which assume that the ionisation structure is complete in each element to look for azimuthal variations across gas and dust. ii) A single model is considered, and the two-dimensional structure of the gas and the dust are assumed to be due to the projection of an emitting sphere onto the sky. The models in both assumptions reproduce the radial profiles of Hbeta surface brightness, the observed number of ionising photons, and the strong optical emission-line relative intensities. The first approach produces a constant-density matter-bounded thin shell of variable thickness and dust-to-gas ratio, while the second gives place to a radiation-bounded thick shell sphere of decreasing particle density. However, the radial profile of the 8/24 microns IR ratio, depending on the gas and dust geometry, only fits well when the thick-shell model is used. The resulting dust-to-gas mass ratio, which was obtained empirically from the derived dust mass using data from Spitzer, also has a better fit using the thick-shell solution. In both approaches, models support the chemical homogeneity, and the ionisation-parameter radial decrease, These results must be taken with care in view of the very low extinction values that are derived from the IR, as compared to that derived from the Balmer decrement. Besides, the IR can be possibly contaminated with the emission from a cloud of diffuse gas and dust above the plane of the galaxy detected at 250 micron Herschel image.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا