ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Microwave Background Anisotropy in the COBE DMR 4-yr Sky Maps

224   0   0.0 ( 0 )
 نشر من قبل Krzysztof M. Gorski
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. M. Gorski




اسأل ChatGPT حول البحث

The COBE satellite has provided the only comprehensive multi-frequency full-sky observations of the microwave sky available today. Assessment of the observations requires a detailed likelihood analysis to extract the maximum amount of information present in the noisy data. I present a specific method for estimating the CMB anisotropy power spectrum independent of any assumptions about the underlying cosmology, and then use standard image processing techniques to generate the most revealing corresponding maps of the signal. The consistency of the data at the available frequencies provides strong support to the assertion that we are being provided with our first glimpse of the last scattering surface.



قيم البحث

اقرأ أيضاً

We cross-correlate the cosmic microwave background temperature anisotropy maps from the WMAP, MAXIMA-I, and MAXIMA-II experiments. We use the cross-spectrum, which is the spherical harmonic transform of the angular two-point correlation function, to quantify the correlation as a function of angular scale. We find that the three possible pairs of cross-spectra are in close agreement with each other and with the power spectra of the individual maps. The probability that there is no correlation between the maps is smaller than 1 * 10^(-8). We also calculate power spectra for maps made of differences between pairs of maps, and show that they are consistent with no signal. The results conclusively show that the three experiments not only display the same statistical properties of the CMB anisotropy, but also detect the same features wherever the observed sky areas overlap. We conclude that the contribution of systematic errors to these maps is negligible and that MAXIMA and WMAP have accurately mapped the cosmic microwave background anisotropy.
We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the M4 call. We consider three possible options for the telescope size: 1 m, 1.5m and 2m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies, making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b|> 30 deg, thousands of strongly gravitationally lensed galaxies. Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization. This will open a new window for studies of radio source polarization and of the global properties of magnetic fields in star forming galaxies and of their relationships with SFRs.
The first two years of COBE DMR observations of the CMB anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accurac y of the detected CMB temperature fluctuations. The two-year 53 GHz data are characterized by RMS temperature fluctuations of DT=44+/-7 uK at 7 degrees and DT=30.5+/-2.7 uK at 10 degrees angular resolution. The 53X90 GHz cross-correlation amplitude at zero lag is C(0)^{1/2}=36+/-5 uK (68%CL) for the unsmoothed 7 degree DMR data. A likelihood analysis of the cross correlation function, including the quadrupole anisotropy, gives a most likely quadrupole-normalized amplitude Q_{rms-PS}=12.4^{+5.2}_{-3.3} uK (68% CL) and a spectral index n=1.59^{+0.49}_{-0.55} for a power law model of initial density fluctuations, P(k)~k^n. With n fixed to 1.0 the most likely amplitude is 17.4 +/-1.5 uK (68% CL). Excluding the quadrupole anisotropy we find Q_{rms-PS}= 16.0^{+7.5}_{-5.2} uK (68% CL), n=1.21^{+0.60}_{-0.55}, and, with n fixed to 1.0 the most likely amplitude is 18.2+/-1.6 uK (68% CL). Monte Carlo simulations indicate that these derived estimates of n may be biased by ~+0.3 (with the observed low value of the quadrupole included in the analysis) and {}~+0.1 (with the quadrupole excluded). Thus the most likely bias-corrected estimate of n is between 1.1 and 1.3. Our best estimate of the dipole from the two-year DMR data is 3.363+/-0.024 mK towards Galactic coordinates (l,b)= (264.4+/-0.2 degrees, +48.1+/-0.4 degrees), and our best estimate of the RMS quadrupole amplitude in our sky is 6+/-3 uK.
We present Cosmic Microwave Background (CMB) maps from the Santa Barbara HACME balloon experiment (Staren etal 2000), covering about 1150 square degrees split between two regions in the northern sky, near the stars gamma Ursae Minoris and alpha Leoni s, respectively. The FWHM of the beam is about 0.77 degrees in three frequency bands centered on 39, 41 and 43 GHz. The results demonstrate that the thoroughly interconnected scan strategy employed allows efficient removal of 1/f-noise and slightly variable scan-synchronous offsets. The maps display no striping, and the noise correlations are found to be virtually isotropic, decaying on an angular scale around one degree. The noise performance of the experiment resulted in an upper limit on CMB anisotropy. However, our results demonstrate that atmospheric contamination and other systematics resulting from the circular scanning strategy can be accurately controlled, and bodes well for the planned follow-up experiments BEAST and ACE, since they show that even with the overly cautious assumption that 1/f-noise and offsets will be as dominant as for HACME, the problems they pose can be readily overcome with the mapmaking algorithm discussed. Our prewhitened notch-filter algorithm for destriping and offset removal should be useful also for other balloon- and ground-based experiments whose scan strategies involve substantial interleaving.
We derive an optimal linear filter to suppress the noise from the COBE DMR sky maps for a given power spectrum. We then apply the filter to the first-year DMR data, after removing pixels within $20^circ$ of the Galactic plane from the data. The filte red data have uncertainties 12 times smaller than the noise level of the raw data. We use the formalism of constrained realizations of Gaussian random fields to assess the uncertainty in the filtered sky maps. In addition to improving the signal-to-noise ratio of the map as a whole, these techniques allow us to recover some information about the CMB anisotropy in the missing Galactic plane region. From these maps we are able to determine which hot and cold spots in the data are statistically significant, and which may have been produced by noise. In addition, the filtered maps can be used for comparison with other experiments on similar angular scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا