ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical observations of nearby isolated pulsar PSR 0656+14 at the 6-meter telescope

119   0   0.0 ( 0 )
 نشر من قبل Zharykov S. V.
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The data of BVR observations of the middle-aged radio pulsar PSR 0656+14 on January, 20/21 at the BTA (6-m) are presented. The brightness is determined in Cousins B filter B ~~25.1 with lambda_eff=4448A in adjacent for HST F130LP long-pass filter of a star-like object, coinsiding with the position of VLA radio source. Relatively large observed V and R fluxes (<~3sigma or > 10E-30 ergs cm^-2 s^-2 Hz^-1) can witness a non-thermal nature of optical radiation of this pulsar up to lambda~~6600A. Most probably in the UV-optical (BVR) spectral range a power-law spectrum is superimposed on the thermal-like radiation of the entire neutron star surface what can be related to a mechanism itself of the pulsar activity.


قيم البحث

اقرأ أيضاً

156 - V. G. Kurt 1997
We observed the middle-aged radio pulsar 0656+14 with a CCD detector at the 6-m telescope. Broadband BVRI images show the following magnitudes of the pulsar counterpart: B = 24.85 (+0.19, -0.16), V = 24.90 (+0.16, -0.14), R = 24.52 (+0.12, -0.11), I = 23.81 (+0.27, -0.21). We fitted the UV-optical (space + ground-based) data with a two-component model which combines a power law (non-thermal component) with a thermal spectrum emitted by the neutron star surface. The power law component, with the energy power-law index alpha=1.5 (+1.1,-1.2), dominates in the observed range. Constraints on the thermal component correspond to the Rayleigh-Jeans parameter Gequiv T_6(R_{10}/d_{500})^2=4.1 (+2.1, -4.1), where $T=10^6T_6$ K is the brightness temperature, R_infty = 10 R_{10}$ km is the neutron star radius as seen by a distant observer, and $d=500 d_{500}$ pc is the distance. The shape of the optical-UV spectrum of PSR 0656+14 differs considerably from those observed from other pulsars: the middle-aged Geminga and young Crab, Vela.
The 3.6 meter Indo-Belgian Devasthal optical telescope (DOT) has been used for optical and near-infrared (NIR) observations of celestial objects. The telescope has detected stars of B = 24.5+-0.2; R = 24.6+-0.12 and g = 25.2+-0.2 mag in exposure time s of 1200, 4320 and 3600 seconds respectively. In one hour of exposure time, a distant galaxy of 24.3+-0.2 mag and point sources of ~ 25 mag have been detected in the SDSS i band. The NIR observations show that stars up to J = 20+-0.1; H = 18.8+-0.1 and K = 18.2+-0.1 mag can be detected in effective exposure times of 500, 550 and 1000 seconds respectively. The nbL band sources brighter than ~9.2 mag and strong (> 0.4 Jy) PAH emitting sources like Sh 2-61 can also be observed with the 3.6 meter DOT. A binary star having angular separation of 0.4 arc-sec has been resolved by the telescope. Sky images with sub-arc-sec angular resolutions are observed with the telescope at wavelengths ranging from optical to NIR for a good fraction of observing time. The on-site performance of the telescope is found to be at par with the performance of other similar telescopes located elsewhere in the world. Due to advantage of its geographical location, the 3.6 meter DOT can provide optical and NIR observations for a number of front line Galactic and extra-galactic astrophysical research problems including optical follow up of GMRT and AstroSat sources and optical transient objects.
70 - L. B^irzan 2015
PSR B0656+14 is a middle-aged pulsar with a characteristic age $tau_c=110$ kyr and spin-down power $dot{E}= 3.8times 10^{34}$ erg s$^{-1}$. Using Chandra data, we searched for a pulsar wind nebula (PWN) and found evidence of extended emission in a 3. 5-15 arcsec annulus around the pulsar, with a luminosity $L_{rm 0.5-8,keV}^{rm ext} sim 8times 10^{28}$ erg s$^{-1}$ (at the distance of 288 pc), which is a fraction of $sim 0.05$ of the non-thermal pulsar luminosity. If the extended emission is mostly due to a PWN, its X-ray efficiency, $eta_{rm pwn} = L_{rm 0.5-8,keV}^{rm ext}/dot{E} sim 2times 10^{-6}$, is lower than those of most other known PWNe but similar to that of the middle-aged Geminga pulsar. The small radial extent and nearly round shape of the putative PWN can be explained if the pulsar is receding (or approaching) in the direction close to the line of sight. The very soft spectrum of the extended emission ($Gammasim 8$), much softer than those of typical PWNe, could be explained by a contribution from a faint dust scattering halo, which may dominate in the outer part of the extended emission.
PSR J0205+6449 is a young ({approx} 5400 years), Crab-like pulsar detected in radio and at X and {gamma}-ray energies and has the third largest spin-down flux among known rotation powered pulsars. It also powers a bright synchrotron nebula detected i n the optical and X-rays. At a distance of {approx} 3.2 kpc and with an extinction comparable to the Crab, PSR J0205+6449 is an obvious target for optical observations. We observed PSR J0205+6449 with several optical facilities, including 8m class ground-based telescopes, such as the Gemini and the Gran Telescopio Canarias. We detected a point source, at a significance of 5.5{sigma}, of magnitude i {approx} 25.5, at the centre of the optical synchrotron nebula, coincident with the very accurate Chandra and radio positions of the pulsar. Thus, we discovered a candidate optical counterpart to PSR J0205+6449. The pulsar candidate counterpart is also detected in the g ({approx}27.4) band and weakly in the r ({approx}26.2) band. Its optical spectrum is fit by a power law with photon index {Gamma}0 = 1.9{pm}0.5, proving that the optical emission if of non-thermal origin, is as expected for a young pulsar. The optical photon index is similar to the X-ray one ({Gamma}X = 1.77{pm}0.03), although the optical fluxes are below the extrapolation of the X-ray power spectrum. This would indicate the presence of a double spectral break between the X-ray and optical energy range, at variance with what is observed for the Crab and Vela pulsars, but similar to the Large Magellanic Cloud pulsar PSR B0540-69.
116 - S. V. Zharikov 2002
We report the B band optical observations of an old (17.5 Myr) radiopulsar PSR B0950+08 obtained with the Suprime-Cam at the Subaru telescope. We detected a faint object, B=27.07(16). Within our astrometrical accuracy it coincides with the radio posi tion of the pulsar and with the object detected earlier by Pavlov et al. (1996) in UV with the HST/FOC/F130LP. The positional coincidence and spectral properties of the object suggest that it is the optical counterpart of PSR B0950+08. Its flux in the B band is two times higher than one would expect from the suggested earlier Rayleigh-Jeans interpretation of the only available HST observations in the adjacent F130LP band. Based on the B and F130LP photometry of the suggested counterpart and on the available X-ray data we argue in favour of nonthermal origin of the broad-band optical spectrum of PSR B0950+08, as it is observed for the optical emission of the younger, middle-aged pulsars PSR B0656+14 and Geminga. At the same time, the optical efficiency of PSR B0950+08, estimated from its spin-down power and the detected optical flux, is by several orders of magnitude higher than for these pulsars, and comparable with that for the much younger and more energetic Crab pulsar. We cannot exclude the presence of a compact, about 1, faint pulsar nebula around PSR B0950+08, elongated perpendicular to the vector of its proper motion, unless it is not a projection of a faint extended object on the pulsar position.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا