ﻻ يوجد ملخص باللغة العربية
The X-Ray Background (XRB) probes structure on scales intermediate between those explored by local galaxy redshift surveys and by the COBE Microwave Background measurements. We predict the large scale angular fluctuations in the XRB, expressed in terms of spherical harmonics for a range of assumed power-spectra and evolution scenarios. The dipole is due to large scale structure as well as to the observers motion (the Compton-Getting effect). For a typical observer the two effects turn out to be comparable in amplitude. The coupling of the two effects makes it difficult to use the XRB for independent confirmation of the CMB dipole being due to the observers motion. The large scale structure dipole (rms per component) relative to the monopole is in the range $a_{1m}/a_{00} sim (0.5-9.0) times 10^{-3} $. The spread is mainly due to the assumed redshift evolution scenarios of the X-ray volume emissivity $rho_x(z)$. The dipoles prediction is consistent with a measured dipole in the HEAO1 XRB map. Typically, the harmonic spectrum drops with $l$ like $a_{lm} sim l^{-0.4}$. This behaviour allows us to discriminate a true clustering signal against the flux shot noise, which is constant with $l$, and may dominate the signal unless bright resolved sources are removed from the XRB map. We also show that Sachs-Wolfe and Doppler (due to the motion of the sources) effects in the XRB are negligible. Although our analysis focuses on the XRB, the formalism is general and can be easily applied to other cosmological backgrounds.
We propose a new approach for measuring the mass profile and shape of groups and clusters of galaxies, which uses lensing magnification of distant background galaxies. The main advantage of lensing magnification is that, unlike lensing shear, it reli
We present results on the properties of neon emission in $zsim2$ star-forming galaxies drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Doubly-ionized neon ([NeIII]3869) is detected at $geq3sigma$ in 61 galaxies, representing $sim$25% of
Recent observations have shown that the scatter in opacities among coeval segments of the Lyman-alpha forest increases rapidly at z > 5. In this paper, we assess whether the large scatter can be explained by fluctuations in the ionizing background in
Powerful radio sources and quasars emit relativistic jets of plasma and magnetic fields that travel hundreds of kilo-parsecs, ultimately depositing energy into the intra- or inter-cluster medium. In the rest frame of the jet, the energy density of th
An observational program focused on the high redshift ($2<z<6$) Universe has the opportunity to dramatically improve over upcoming LSS and CMB surveys on measurements of both the standard cosmological model and its extensions. Using a Fisher matrix f